File size: 17,204 Bytes
2a3a041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

from args import get_parser
import torch
import torch.nn as nn
import torch.autograd as autograd
import numpy as np
import os
import random
import pickle
from data_loader import get_loader
from build_vocab import Vocabulary
from model import get_model
from torchvision import transforms
import sys
import json
import time
import torch.backends.cudnn as cudnn
from utils.tb_visualizer import Visualizer
from model import mask_from_eos, label2onehot
from utils.metrics import softIoU, compute_metrics, update_error_types
import random
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
map_loc = None if torch.cuda.is_available() else 'cpu'


def merge_models(args, model, ingr_vocab_size, instrs_vocab_size):
    load_args = pickle.load(open(os.path.join(args.save_dir, args.project_name,
                                              args.transfer_from, 'checkpoints/args.pkl'), 'rb'))

    model_ingrs = get_model(load_args, ingr_vocab_size, instrs_vocab_size)
    model_path = os.path.join(args.save_dir, args.project_name, args.transfer_from, 'checkpoints', 'modelbest.ckpt')

    # Load the trained model parameters
    model_ingrs.load_state_dict(torch.load(model_path, map_location=map_loc))
    model.ingredient_decoder = model_ingrs.ingredient_decoder
    args.transf_layers_ingrs = load_args.transf_layers_ingrs
    args.n_att_ingrs = load_args.n_att_ingrs

    return args, model


def save_model(model, optimizer, checkpoints_dir, suff=''):
    if torch.cuda.device_count() > 1:
        torch.save(model.module.state_dict(), os.path.join(
            checkpoints_dir, 'model' + suff + '.ckpt'))

    else:
        torch.save(model.state_dict(), os.path.join(
            checkpoints_dir, 'model' + suff + '.ckpt'))

    torch.save(optimizer.state_dict(), os.path.join(
        checkpoints_dir, 'optim' + suff + '.ckpt'))


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


def set_lr(optimizer, decay_factor):
    for group in optimizer.param_groups:
        group['lr'] = group['lr']*decay_factor


def make_dir(d):
    if not os.path.exists(d):
        os.makedirs(d)


def main(args):

    # Create model directory & other aux folders for logging
    where_to_save = os.path.join(args.save_dir, args.project_name, args.model_name)
    checkpoints_dir = os.path.join(where_to_save, 'checkpoints')
    logs_dir = os.path.join(where_to_save, 'logs')
    tb_logs = os.path.join(args.save_dir, args.project_name, 'tb_logs', args.model_name)
    make_dir(where_to_save)
    make_dir(logs_dir)
    make_dir(checkpoints_dir)
    make_dir(tb_logs)
    if args.tensorboard:
        logger = Visualizer(tb_logs, name='visual_results')

    # check if we want to resume from last checkpoint of current model
    if args.resume:
        args = pickle.load(open(os.path.join(checkpoints_dir, 'args.pkl'), 'rb'))
        args.resume = True

    # logs to disk
    if not args.log_term:
        print ("Training logs will be saved to:", os.path.join(logs_dir, 'train.log'))
        sys.stdout = open(os.path.join(logs_dir, 'train.log'), 'w')
        sys.stderr = open(os.path.join(logs_dir, 'train.err'), 'w')

    print(args)
    pickle.dump(args, open(os.path.join(checkpoints_dir, 'args.pkl'), 'wb'))

    # patience init
    curr_pat = 0

    # Build data loader
    data_loaders = {}
    datasets = {}

    data_dir = args.recipe1m_dir
    for split in ['train', 'val']:

        transforms_list = [transforms.Resize((args.image_size))]

        if split == 'train':
            # Image preprocessing, normalization for the pretrained resnet
            transforms_list.append(transforms.RandomHorizontalFlip())
            transforms_list.append(transforms.RandomAffine(degrees=10, translate=(0.1, 0.1)))
            transforms_list.append(transforms.RandomCrop(args.crop_size))

        else:
            transforms_list.append(transforms.CenterCrop(args.crop_size))
        transforms_list.append(transforms.ToTensor())
        transforms_list.append(transforms.Normalize((0.485, 0.456, 0.406),
                                                    (0.229, 0.224, 0.225)))

        transform = transforms.Compose(transforms_list)
        max_num_samples = max(args.max_eval, args.batch_size) if split == 'val' else -1
        data_loaders[split], datasets[split] = get_loader(data_dir, args.aux_data_dir, split,
                                                          args.maxseqlen,
                                                          args.maxnuminstrs,
                                                          args.maxnumlabels,
                                                          args.maxnumims,
                                                          transform, args.batch_size,
                                                          shuffle=split == 'train', num_workers=args.num_workers,
                                                          drop_last=True,
                                                          max_num_samples=max_num_samples,
                                                          use_lmdb=args.use_lmdb,
                                                          suff=args.suff)

    ingr_vocab_size = datasets[split].get_ingrs_vocab_size()
    instrs_vocab_size = datasets[split].get_instrs_vocab_size()

    # Build the model
    model = get_model(args, ingr_vocab_size, instrs_vocab_size)
    keep_cnn_gradients = False

    decay_factor = 1.0

    # add model parameters
    if args.ingrs_only:
        params = list(model.ingredient_decoder.parameters())
    elif args.recipe_only:
        params = list(model.recipe_decoder.parameters()) + list(model.ingredient_encoder.parameters())
    else:
        params = list(model.recipe_decoder.parameters()) + list(model.ingredient_decoder.parameters()) \
                 + list(model.ingredient_encoder.parameters())

    # only train the linear layer in the encoder if we are not transfering from another model
    if args.transfer_from == '':
        params += list(model.image_encoder.linear.parameters())
    params_cnn = list(model.image_encoder.resnet.parameters())

    print ("CNN params:", sum(p.numel() for p in params_cnn if p.requires_grad))
    print ("decoder params:", sum(p.numel() for p in params if p.requires_grad))
    # start optimizing cnn from the beginning
    if params_cnn is not None and args.finetune_after == 0:
        optimizer = torch.optim.Adam([{'params': params}, {'params': params_cnn,
                                                           'lr': args.learning_rate*args.scale_learning_rate_cnn}],
                                     lr=args.learning_rate, weight_decay=args.weight_decay)
        keep_cnn_gradients = True
        print ("Fine tuning resnet")
    else:
        optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    if args.resume:
        model_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'model.ckpt')
        optim_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'optim.ckpt')
        optimizer.load_state_dict(torch.load(optim_path, map_location=map_loc))
        for state in optimizer.state.values():
            for k, v in state.items():
                if isinstance(v, torch.Tensor):
                    state[k] = v.to(device)
        model.load_state_dict(torch.load(model_path, map_location=map_loc))

    if args.transfer_from != '':
        # loads CNN encoder from transfer_from model
        model_path = os.path.join(args.save_dir, args.project_name, args.transfer_from, 'checkpoints', 'modelbest.ckpt')
        pretrained_dict = torch.load(model_path, map_location=map_loc)
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if 'encoder' in k}
        model.load_state_dict(pretrained_dict, strict=False)
        args, model = merge_models(args, model, ingr_vocab_size, instrs_vocab_size)

    if device != 'cpu' and torch.cuda.device_count() > 1:
        model = nn.DataParallel(model)

    model = model.to(device)
    cudnn.benchmark = True

    if not hasattr(args, 'current_epoch'):
        args.current_epoch = 0

    es_best = 10000 if args.es_metric == 'loss' else 0
    # Train the model
    start = args.current_epoch
    for epoch in range(start, args.num_epochs):

        # save current epoch for resuming
        if args.tensorboard:
            logger.reset()

        args.current_epoch = epoch
        # increase / decrase values for moving params
        if args.decay_lr:
            frac = epoch // args.lr_decay_every
            decay_factor = args.lr_decay_rate ** frac
            new_lr = args.learning_rate*decay_factor
            print ('Epoch %d. lr: %.5f'%(epoch, new_lr))
            set_lr(optimizer, decay_factor)

        if args.finetune_after != -1 and args.finetune_after < epoch \
                and not keep_cnn_gradients and params_cnn is not None:

            print("Starting to fine tune CNN")
            # start with learning rates as they were (if decayed during training)
            optimizer = torch.optim.Adam([{'params': params},
                                          {'params': params_cnn,
                                           'lr': decay_factor*args.learning_rate*args.scale_learning_rate_cnn}],
                                         lr=decay_factor*args.learning_rate)
            keep_cnn_gradients = True

        for split in ['train', 'val']:

            if split == 'train':
                model.train()
            else:
                model.eval()
            total_step = len(data_loaders[split])
            loader = iter(data_loaders[split])

            total_loss_dict = {'recipe_loss': [], 'ingr_loss': [],
                               'eos_loss': [], 'loss': [],
                               'iou': [], 'perplexity': [], 'iou_sample': [],
                               'f1': [],
                               'card_penalty': []}

            error_types = {'tp_i': 0, 'fp_i': 0, 'fn_i': 0, 'tn_i': 0,
                           'tp_all': 0, 'fp_all': 0, 'fn_all': 0}

            torch.cuda.synchronize()
            start = time.time()

            for i in range(total_step):

                img_inputs, captions, ingr_gt, img_ids, paths = loader.next()

                ingr_gt = ingr_gt.to(device)
                img_inputs = img_inputs.to(device)
                captions = captions.to(device)
                true_caps_batch = captions.clone()[:, 1:].contiguous()
                loss_dict = {}

                if split == 'val':
                    with torch.no_grad():
                        losses = model(img_inputs, captions, ingr_gt)

                        if not args.recipe_only:
                            outputs = model(img_inputs, captions, ingr_gt, sample=True)

                            ingr_ids_greedy = outputs['ingr_ids']

                            mask = mask_from_eos(ingr_ids_greedy, eos_value=0, mult_before=False)
                            ingr_ids_greedy[mask == 0] = ingr_vocab_size-1
                            pred_one_hot = label2onehot(ingr_ids_greedy, ingr_vocab_size-1)
                            target_one_hot = label2onehot(ingr_gt, ingr_vocab_size-1)
                            iou_sample = softIoU(pred_one_hot, target_one_hot)
                            iou_sample = iou_sample.sum() / (torch.nonzero(iou_sample.data).size(0) + 1e-6)
                            loss_dict['iou_sample'] = iou_sample.item()

                            update_error_types(error_types, pred_one_hot, target_one_hot)

                            del outputs, pred_one_hot, target_one_hot, iou_sample

                else:
                    losses = model(img_inputs, captions, ingr_gt,
                                   keep_cnn_gradients=keep_cnn_gradients)

                if not args.ingrs_only:
                    recipe_loss = losses['recipe_loss']

                    recipe_loss = recipe_loss.view(true_caps_batch.size())
                    non_pad_mask = true_caps_batch.ne(instrs_vocab_size - 1).float()

                    recipe_loss = torch.sum(recipe_loss*non_pad_mask, dim=-1) / torch.sum(non_pad_mask, dim=-1)
                    perplexity = torch.exp(recipe_loss)

                    recipe_loss = recipe_loss.mean()
                    perplexity = perplexity.mean()

                    loss_dict['recipe_loss'] = recipe_loss.item()
                    loss_dict['perplexity'] = perplexity.item()
                else:
                    recipe_loss = 0

                if not args.recipe_only:

                    ingr_loss = losses['ingr_loss']
                    ingr_loss = ingr_loss.mean()
                    loss_dict['ingr_loss'] = ingr_loss.item()

                    eos_loss = losses['eos_loss']
                    eos_loss = eos_loss.mean()
                    loss_dict['eos_loss'] = eos_loss.item()

                    iou_seq = losses['iou']
                    iou_seq = iou_seq.mean()
                    loss_dict['iou'] = iou_seq.item()

                    card_penalty = losses['card_penalty'].mean()
                    loss_dict['card_penalty'] = card_penalty.item()
                else:
                    ingr_loss, eos_loss, card_penalty = 0, 0, 0

                loss = args.loss_weight[0] * recipe_loss + args.loss_weight[1] * ingr_loss \
                       + args.loss_weight[2]*eos_loss + args.loss_weight[3]*card_penalty

                loss_dict['loss'] = loss.item()

                for key in loss_dict.keys():
                    total_loss_dict[key].append(loss_dict[key])

                if split == 'train':
                    model.zero_grad()
                    loss.backward()
                    optimizer.step()

                # Print log info
                if args.log_step != -1 and i % args.log_step == 0:
                    elapsed_time = time.time()-start
                    lossesstr = ""
                    for k in total_loss_dict.keys():
                        if len(total_loss_dict[k]) == 0:
                            continue
                        this_one = "%s: %.4f" % (k, np.mean(total_loss_dict[k][-args.log_step:]))
                        lossesstr += this_one + ', '
                    # this only displays nll loss on captions, the rest of losses will be in tensorboard logs
                    strtoprint = 'Split: %s, Epoch [%d/%d], Step [%d/%d], Losses: %sTime: %.4f' % (split, epoch,
                                                                                                   args.num_epochs, i,
                                                                                                   total_step,
                                                                                                   lossesstr,
                                                                                                   elapsed_time)
                    print(strtoprint)

                    if args.tensorboard:
                        # logger.histo_summary(model=model, step=total_step * epoch + i)
                        logger.scalar_summary(mode=split+'_iter', epoch=total_step*epoch+i,
                                              **{k: np.mean(v[-args.log_step:]) for k, v in total_loss_dict.items() if v})

                    torch.cuda.synchronize()
                    start = time.time()
                del loss, losses, captions, img_inputs

            if split == 'val' and not args.recipe_only:
                ret_metrics = {'accuracy': [], 'f1': [], 'jaccard': [], 'f1_ingredients': [], 'dice': []}
                compute_metrics(ret_metrics, error_types,
                                ['accuracy', 'f1', 'jaccard', 'f1_ingredients', 'dice'], eps=1e-10,
                                weights=None)

                total_loss_dict['f1'] = ret_metrics['f1']
            if args.tensorboard:
                # 1. Log scalar values (scalar summary)
                logger.scalar_summary(mode=split,
                                      epoch=epoch,
                                      **{k: np.mean(v) for k, v in total_loss_dict.items() if v})

        # Save the model's best checkpoint if performance was improved
        es_value = np.mean(total_loss_dict[args.es_metric])

        # save current model as well
        save_model(model, optimizer, checkpoints_dir, suff='')
        if (args.es_metric == 'loss' and es_value < es_best) or (args.es_metric == 'iou_sample' and es_value > es_best):
            es_best = es_value
            save_model(model, optimizer, checkpoints_dir, suff='best')
            pickle.dump(args, open(os.path.join(checkpoints_dir, 'args.pkl'), 'wb'))
            curr_pat = 0
            print('Saved checkpoint.')
        else:
            curr_pat += 1

        if curr_pat > args.patience:
            break

    if args.tensorboard:
        logger.close()


if __name__ == '__main__':
    args = get_parser()
    torch.manual_seed(1234)
    torch.cuda.manual_seed(1234)
    random.seed(1234)
    np.random.seed(1234)
    main(args)