Spaces:
Configuration error
Configuration error
File size: 17,204 Bytes
2a3a041 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
from args import get_parser
import torch
import torch.nn as nn
import torch.autograd as autograd
import numpy as np
import os
import random
import pickle
from data_loader import get_loader
from build_vocab import Vocabulary
from model import get_model
from torchvision import transforms
import sys
import json
import time
import torch.backends.cudnn as cudnn
from utils.tb_visualizer import Visualizer
from model import mask_from_eos, label2onehot
from utils.metrics import softIoU, compute_metrics, update_error_types
import random
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
map_loc = None if torch.cuda.is_available() else 'cpu'
def merge_models(args, model, ingr_vocab_size, instrs_vocab_size):
load_args = pickle.load(open(os.path.join(args.save_dir, args.project_name,
args.transfer_from, 'checkpoints/args.pkl'), 'rb'))
model_ingrs = get_model(load_args, ingr_vocab_size, instrs_vocab_size)
model_path = os.path.join(args.save_dir, args.project_name, args.transfer_from, 'checkpoints', 'modelbest.ckpt')
# Load the trained model parameters
model_ingrs.load_state_dict(torch.load(model_path, map_location=map_loc))
model.ingredient_decoder = model_ingrs.ingredient_decoder
args.transf_layers_ingrs = load_args.transf_layers_ingrs
args.n_att_ingrs = load_args.n_att_ingrs
return args, model
def save_model(model, optimizer, checkpoints_dir, suff=''):
if torch.cuda.device_count() > 1:
torch.save(model.module.state_dict(), os.path.join(
checkpoints_dir, 'model' + suff + '.ckpt'))
else:
torch.save(model.state_dict(), os.path.join(
checkpoints_dir, 'model' + suff + '.ckpt'))
torch.save(optimizer.state_dict(), os.path.join(
checkpoints_dir, 'optim' + suff + '.ckpt'))
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def set_lr(optimizer, decay_factor):
for group in optimizer.param_groups:
group['lr'] = group['lr']*decay_factor
def make_dir(d):
if not os.path.exists(d):
os.makedirs(d)
def main(args):
# Create model directory & other aux folders for logging
where_to_save = os.path.join(args.save_dir, args.project_name, args.model_name)
checkpoints_dir = os.path.join(where_to_save, 'checkpoints')
logs_dir = os.path.join(where_to_save, 'logs')
tb_logs = os.path.join(args.save_dir, args.project_name, 'tb_logs', args.model_name)
make_dir(where_to_save)
make_dir(logs_dir)
make_dir(checkpoints_dir)
make_dir(tb_logs)
if args.tensorboard:
logger = Visualizer(tb_logs, name='visual_results')
# check if we want to resume from last checkpoint of current model
if args.resume:
args = pickle.load(open(os.path.join(checkpoints_dir, 'args.pkl'), 'rb'))
args.resume = True
# logs to disk
if not args.log_term:
print ("Training logs will be saved to:", os.path.join(logs_dir, 'train.log'))
sys.stdout = open(os.path.join(logs_dir, 'train.log'), 'w')
sys.stderr = open(os.path.join(logs_dir, 'train.err'), 'w')
print(args)
pickle.dump(args, open(os.path.join(checkpoints_dir, 'args.pkl'), 'wb'))
# patience init
curr_pat = 0
# Build data loader
data_loaders = {}
datasets = {}
data_dir = args.recipe1m_dir
for split in ['train', 'val']:
transforms_list = [transforms.Resize((args.image_size))]
if split == 'train':
# Image preprocessing, normalization for the pretrained resnet
transforms_list.append(transforms.RandomHorizontalFlip())
transforms_list.append(transforms.RandomAffine(degrees=10, translate=(0.1, 0.1)))
transforms_list.append(transforms.RandomCrop(args.crop_size))
else:
transforms_list.append(transforms.CenterCrop(args.crop_size))
transforms_list.append(transforms.ToTensor())
transforms_list.append(transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225)))
transform = transforms.Compose(transforms_list)
max_num_samples = max(args.max_eval, args.batch_size) if split == 'val' else -1
data_loaders[split], datasets[split] = get_loader(data_dir, args.aux_data_dir, split,
args.maxseqlen,
args.maxnuminstrs,
args.maxnumlabels,
args.maxnumims,
transform, args.batch_size,
shuffle=split == 'train', num_workers=args.num_workers,
drop_last=True,
max_num_samples=max_num_samples,
use_lmdb=args.use_lmdb,
suff=args.suff)
ingr_vocab_size = datasets[split].get_ingrs_vocab_size()
instrs_vocab_size = datasets[split].get_instrs_vocab_size()
# Build the model
model = get_model(args, ingr_vocab_size, instrs_vocab_size)
keep_cnn_gradients = False
decay_factor = 1.0
# add model parameters
if args.ingrs_only:
params = list(model.ingredient_decoder.parameters())
elif args.recipe_only:
params = list(model.recipe_decoder.parameters()) + list(model.ingredient_encoder.parameters())
else:
params = list(model.recipe_decoder.parameters()) + list(model.ingredient_decoder.parameters()) \
+ list(model.ingredient_encoder.parameters())
# only train the linear layer in the encoder if we are not transfering from another model
if args.transfer_from == '':
params += list(model.image_encoder.linear.parameters())
params_cnn = list(model.image_encoder.resnet.parameters())
print ("CNN params:", sum(p.numel() for p in params_cnn if p.requires_grad))
print ("decoder params:", sum(p.numel() for p in params if p.requires_grad))
# start optimizing cnn from the beginning
if params_cnn is not None and args.finetune_after == 0:
optimizer = torch.optim.Adam([{'params': params}, {'params': params_cnn,
'lr': args.learning_rate*args.scale_learning_rate_cnn}],
lr=args.learning_rate, weight_decay=args.weight_decay)
keep_cnn_gradients = True
print ("Fine tuning resnet")
else:
optimizer = torch.optim.Adam(params, lr=args.learning_rate)
if args.resume:
model_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'model.ckpt')
optim_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'optim.ckpt')
optimizer.load_state_dict(torch.load(optim_path, map_location=map_loc))
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
model.load_state_dict(torch.load(model_path, map_location=map_loc))
if args.transfer_from != '':
# loads CNN encoder from transfer_from model
model_path = os.path.join(args.save_dir, args.project_name, args.transfer_from, 'checkpoints', 'modelbest.ckpt')
pretrained_dict = torch.load(model_path, map_location=map_loc)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if 'encoder' in k}
model.load_state_dict(pretrained_dict, strict=False)
args, model = merge_models(args, model, ingr_vocab_size, instrs_vocab_size)
if device != 'cpu' and torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model = model.to(device)
cudnn.benchmark = True
if not hasattr(args, 'current_epoch'):
args.current_epoch = 0
es_best = 10000 if args.es_metric == 'loss' else 0
# Train the model
start = args.current_epoch
for epoch in range(start, args.num_epochs):
# save current epoch for resuming
if args.tensorboard:
logger.reset()
args.current_epoch = epoch
# increase / decrase values for moving params
if args.decay_lr:
frac = epoch // args.lr_decay_every
decay_factor = args.lr_decay_rate ** frac
new_lr = args.learning_rate*decay_factor
print ('Epoch %d. lr: %.5f'%(epoch, new_lr))
set_lr(optimizer, decay_factor)
if args.finetune_after != -1 and args.finetune_after < epoch \
and not keep_cnn_gradients and params_cnn is not None:
print("Starting to fine tune CNN")
# start with learning rates as they were (if decayed during training)
optimizer = torch.optim.Adam([{'params': params},
{'params': params_cnn,
'lr': decay_factor*args.learning_rate*args.scale_learning_rate_cnn}],
lr=decay_factor*args.learning_rate)
keep_cnn_gradients = True
for split in ['train', 'val']:
if split == 'train':
model.train()
else:
model.eval()
total_step = len(data_loaders[split])
loader = iter(data_loaders[split])
total_loss_dict = {'recipe_loss': [], 'ingr_loss': [],
'eos_loss': [], 'loss': [],
'iou': [], 'perplexity': [], 'iou_sample': [],
'f1': [],
'card_penalty': []}
error_types = {'tp_i': 0, 'fp_i': 0, 'fn_i': 0, 'tn_i': 0,
'tp_all': 0, 'fp_all': 0, 'fn_all': 0}
torch.cuda.synchronize()
start = time.time()
for i in range(total_step):
img_inputs, captions, ingr_gt, img_ids, paths = loader.next()
ingr_gt = ingr_gt.to(device)
img_inputs = img_inputs.to(device)
captions = captions.to(device)
true_caps_batch = captions.clone()[:, 1:].contiguous()
loss_dict = {}
if split == 'val':
with torch.no_grad():
losses = model(img_inputs, captions, ingr_gt)
if not args.recipe_only:
outputs = model(img_inputs, captions, ingr_gt, sample=True)
ingr_ids_greedy = outputs['ingr_ids']
mask = mask_from_eos(ingr_ids_greedy, eos_value=0, mult_before=False)
ingr_ids_greedy[mask == 0] = ingr_vocab_size-1
pred_one_hot = label2onehot(ingr_ids_greedy, ingr_vocab_size-1)
target_one_hot = label2onehot(ingr_gt, ingr_vocab_size-1)
iou_sample = softIoU(pred_one_hot, target_one_hot)
iou_sample = iou_sample.sum() / (torch.nonzero(iou_sample.data).size(0) + 1e-6)
loss_dict['iou_sample'] = iou_sample.item()
update_error_types(error_types, pred_one_hot, target_one_hot)
del outputs, pred_one_hot, target_one_hot, iou_sample
else:
losses = model(img_inputs, captions, ingr_gt,
keep_cnn_gradients=keep_cnn_gradients)
if not args.ingrs_only:
recipe_loss = losses['recipe_loss']
recipe_loss = recipe_loss.view(true_caps_batch.size())
non_pad_mask = true_caps_batch.ne(instrs_vocab_size - 1).float()
recipe_loss = torch.sum(recipe_loss*non_pad_mask, dim=-1) / torch.sum(non_pad_mask, dim=-1)
perplexity = torch.exp(recipe_loss)
recipe_loss = recipe_loss.mean()
perplexity = perplexity.mean()
loss_dict['recipe_loss'] = recipe_loss.item()
loss_dict['perplexity'] = perplexity.item()
else:
recipe_loss = 0
if not args.recipe_only:
ingr_loss = losses['ingr_loss']
ingr_loss = ingr_loss.mean()
loss_dict['ingr_loss'] = ingr_loss.item()
eos_loss = losses['eos_loss']
eos_loss = eos_loss.mean()
loss_dict['eos_loss'] = eos_loss.item()
iou_seq = losses['iou']
iou_seq = iou_seq.mean()
loss_dict['iou'] = iou_seq.item()
card_penalty = losses['card_penalty'].mean()
loss_dict['card_penalty'] = card_penalty.item()
else:
ingr_loss, eos_loss, card_penalty = 0, 0, 0
loss = args.loss_weight[0] * recipe_loss + args.loss_weight[1] * ingr_loss \
+ args.loss_weight[2]*eos_loss + args.loss_weight[3]*card_penalty
loss_dict['loss'] = loss.item()
for key in loss_dict.keys():
total_loss_dict[key].append(loss_dict[key])
if split == 'train':
model.zero_grad()
loss.backward()
optimizer.step()
# Print log info
if args.log_step != -1 and i % args.log_step == 0:
elapsed_time = time.time()-start
lossesstr = ""
for k in total_loss_dict.keys():
if len(total_loss_dict[k]) == 0:
continue
this_one = "%s: %.4f" % (k, np.mean(total_loss_dict[k][-args.log_step:]))
lossesstr += this_one + ', '
# this only displays nll loss on captions, the rest of losses will be in tensorboard logs
strtoprint = 'Split: %s, Epoch [%d/%d], Step [%d/%d], Losses: %sTime: %.4f' % (split, epoch,
args.num_epochs, i,
total_step,
lossesstr,
elapsed_time)
print(strtoprint)
if args.tensorboard:
# logger.histo_summary(model=model, step=total_step * epoch + i)
logger.scalar_summary(mode=split+'_iter', epoch=total_step*epoch+i,
**{k: np.mean(v[-args.log_step:]) for k, v in total_loss_dict.items() if v})
torch.cuda.synchronize()
start = time.time()
del loss, losses, captions, img_inputs
if split == 'val' and not args.recipe_only:
ret_metrics = {'accuracy': [], 'f1': [], 'jaccard': [], 'f1_ingredients': [], 'dice': []}
compute_metrics(ret_metrics, error_types,
['accuracy', 'f1', 'jaccard', 'f1_ingredients', 'dice'], eps=1e-10,
weights=None)
total_loss_dict['f1'] = ret_metrics['f1']
if args.tensorboard:
# 1. Log scalar values (scalar summary)
logger.scalar_summary(mode=split,
epoch=epoch,
**{k: np.mean(v) for k, v in total_loss_dict.items() if v})
# Save the model's best checkpoint if performance was improved
es_value = np.mean(total_loss_dict[args.es_metric])
# save current model as well
save_model(model, optimizer, checkpoints_dir, suff='')
if (args.es_metric == 'loss' and es_value < es_best) or (args.es_metric == 'iou_sample' and es_value > es_best):
es_best = es_value
save_model(model, optimizer, checkpoints_dir, suff='best')
pickle.dump(args, open(os.path.join(checkpoints_dir, 'args.pkl'), 'wb'))
curr_pat = 0
print('Saved checkpoint.')
else:
curr_pat += 1
if curr_pat > args.patience:
break
if args.tensorboard:
logger.close()
if __name__ == '__main__':
args = get_parser()
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
random.seed(1234)
np.random.seed(1234)
main(args)
|