Spaces:
Configuration error
Configuration error
# Copyright (c) 2017-present, Facebook, Inc. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the LICENSE file in | |
# https://github.com/pytorch/fairseq. An additional grant of patent rights | |
# can be found in the PATENTS file in the same directory. | |
import torch | |
from torch import nn | |
from torch.nn import Parameter | |
import torch.nn.functional as F | |
from src.modules.utils import fill_with_neg_inf, get_incremental_state, set_incremental_state | |
class MultiheadAttention(nn.Module): | |
"""Multi-headed attention. | |
See "Attention Is All You Need" for more details. | |
""" | |
def __init__(self, embed_dim, num_heads, dropout=0., bias=True): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" | |
self.scaling = self.head_dim**-0.5 | |
self._mask = None | |
self.in_proj_weight = Parameter(torch.Tensor(3*embed_dim, embed_dim)) | |
if bias: | |
self.in_proj_bias = Parameter(torch.Tensor(3*embed_dim)) | |
else: | |
self.register_parameter('in_proj_bias', None) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.xavier_uniform_(self.in_proj_weight) | |
nn.init.xavier_uniform_(self.out_proj.weight) | |
if self.in_proj_bias is not None: | |
nn.init.constant_(self.in_proj_bias, 0.) | |
nn.init.constant_(self.out_proj.bias, 0.) | |
def forward(self, query, key, value, mask_future_timesteps=False, | |
key_padding_mask=None, incremental_state=None, | |
need_weights=True, static_kv=False): | |
"""Input shape: Time x Batch x Channel | |
Self-attention can be implemented by passing in the same arguments for | |
query, key and value. Future timesteps can be masked with the | |
`mask_future_timesteps` argument. Padding elements can be excluded from | |
the key by passing a binary ByteTensor (`key_padding_mask`) with shape: | |
batch x src_len, where padding elements are indicated by 1s. | |
""" | |
qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr() | |
kv_same = key.data_ptr() == value.data_ptr() | |
tgt_len, bsz, embed_dim = query.size() | |
assert embed_dim == self.embed_dim | |
assert list(query.size()) == [tgt_len, bsz, embed_dim] | |
assert key.size() == value.size() | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
if 'prev_key' in saved_state: | |
# previous time steps are cached - no need to recompute | |
# key and value if they are static | |
if static_kv: | |
assert kv_same and not qkv_same | |
key = value = None | |
else: | |
saved_state = None | |
if qkv_same: | |
# self-attention | |
q, k, v = self.in_proj_qkv(query) | |
elif kv_same: | |
# encoder-decoder attention | |
q = self.in_proj_q(query) | |
if key is None: | |
assert value is None | |
# this will allow us to concat it with previous value and get | |
# just get the previous value | |
k = v = q.new(0) | |
else: | |
k, v = self.in_proj_kv(key) | |
else: | |
q = self.in_proj_q(query) | |
k = self.in_proj_k(key) | |
v = self.in_proj_v(value) | |
q *= self.scaling | |
if saved_state is not None: | |
if 'prev_key' in saved_state: | |
k = torch.cat((saved_state['prev_key'], k), dim=0) | |
if 'prev_value' in saved_state: | |
v = torch.cat((saved_state['prev_value'], v), dim=0) | |
saved_state['prev_key'] = k | |
saved_state['prev_value'] = v | |
self._set_input_buffer(incremental_state, saved_state) | |
src_len = k.size(0) | |
if key_padding_mask is not None: | |
assert key_padding_mask.size(0) == bsz | |
assert key_padding_mask.size(1) == src_len | |
q = q.contiguous().view(tgt_len, bsz*self.num_heads, self.head_dim).transpose(0, 1) | |
k = k.contiguous().view(src_len, bsz*self.num_heads, self.head_dim).transpose(0, 1) | |
v = v.contiguous().view(src_len, bsz*self.num_heads, self.head_dim).transpose(0, 1) | |
attn_weights = torch.bmm(q, k.transpose(1, 2)) | |
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] | |
# only apply masking at training time (when incremental state is None) | |
if mask_future_timesteps and incremental_state is None: | |
assert query.size() == key.size(), \ | |
'mask_future_timesteps only applies to self-attention' | |
attn_weights += self.buffered_mask(attn_weights).unsqueeze(0) | |
if key_padding_mask is not None: | |
# don't attend to padding symbols | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.float().masked_fill( | |
key_padding_mask.unsqueeze(1).unsqueeze(2), | |
float('-inf'), | |
).type_as(attn_weights) # FP16 support: cast to float and back | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = F.softmax(attn_weights.float(), dim=-1).type_as(attn_weights) | |
attn_weights = F.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn = torch.bmm(attn_weights, v) | |
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] | |
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
attn = self.out_proj(attn) | |
# average attention weights over heads | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.sum(dim=1) / self.num_heads | |
return attn, attn_weights | |
def in_proj_qkv(self, query): | |
return self._in_proj(query).chunk(3, dim=-1) | |
def in_proj_kv(self, key): | |
return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) | |
def in_proj_q(self, query): | |
return self._in_proj(query, end=self.embed_dim) | |
def in_proj_k(self, key): | |
return self._in_proj(key, start=self.embed_dim, end=2*self.embed_dim) | |
def in_proj_v(self, value): | |
return self._in_proj(value, start=2*self.embed_dim) | |
def _in_proj(self, input, start=None, end=None): | |
weight = self.in_proj_weight | |
bias = self.in_proj_bias | |
if end is not None: | |
weight = weight[:end, :] | |
if bias is not None: | |
bias = bias[:end] | |
if start is not None: | |
weight = weight[start:, :] | |
if bias is not None: | |
bias = bias[start:] | |
return F.linear(input, weight, bias) | |
def buffered_mask(self, tensor): | |
dim = tensor.size(-1) | |
if self._mask is None: | |
self._mask = torch.triu(fill_with_neg_inf(tensor.new(dim, dim)), 1) | |
if self._mask.size(0) < dim: | |
self._mask = torch.triu(fill_with_neg_inf(self._mask.resize_(dim, dim)), 1) | |
return self._mask[:dim, :dim] | |
def reorder_incremental_state(self, incremental_state, new_order): | |
"""Reorder buffered internal state (for incremental generation).""" | |
input_buffer = self._get_input_buffer(incremental_state) | |
if input_buffer is not None: | |
for k in input_buffer.keys(): | |
input_buffer[k] = input_buffer[k].index_select(1, new_order) | |
self._set_input_buffer(incremental_state, input_buffer) | |
def _get_input_buffer(self, incremental_state): | |
return get_incremental_state( | |
self, | |
incremental_state, | |
'attn_state', | |
) or {} | |
def _set_input_buffer(self, incremental_state, buffer): | |
set_incremental_state( | |
self, | |
incremental_state, | |
'attn_state', | |
buffer, | |
) | |