recipedia / src /modules /multihead_attention.py
johnsonhung
init
2a3a041
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# https://github.com/pytorch/fairseq. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import torch
from torch import nn
from torch.nn import Parameter
import torch.nn.functional as F
from src.modules.utils import fill_with_neg_inf, get_incremental_state, set_incremental_state
class MultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, embed_dim, num_heads, dropout=0., bias=True):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim**-0.5
self._mask = None
self.in_proj_weight = Parameter(torch.Tensor(3*embed_dim, embed_dim))
if bias:
self.in_proj_bias = Parameter(torch.Tensor(3*embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.in_proj_weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.in_proj_bias is not None:
nn.init.constant_(self.in_proj_bias, 0.)
nn.init.constant_(self.out_proj.bias, 0.)
def forward(self, query, key, value, mask_future_timesteps=False,
key_padding_mask=None, incremental_state=None,
need_weights=True, static_kv=False):
"""Input shape: Time x Batch x Channel
Self-attention can be implemented by passing in the same arguments for
query, key and value. Future timesteps can be masked with the
`mask_future_timesteps` argument. Padding elements can be excluded from
the key by passing a binary ByteTensor (`key_padding_mask`) with shape:
batch x src_len, where padding elements are indicated by 1s.
"""
qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr()
kv_same = key.data_ptr() == value.data_ptr()
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
assert key.size() == value.size()
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_key' in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert kv_same and not qkv_same
key = value = None
else:
saved_state = None
if qkv_same:
# self-attention
q, k, v = self.in_proj_qkv(query)
elif kv_same:
# encoder-decoder attention
q = self.in_proj_q(query)
if key is None:
assert value is None
# this will allow us to concat it with previous value and get
# just get the previous value
k = v = q.new(0)
else:
k, v = self.in_proj_kv(key)
else:
q = self.in_proj_q(query)
k = self.in_proj_k(key)
v = self.in_proj_v(value)
q *= self.scaling
if saved_state is not None:
if 'prev_key' in saved_state:
k = torch.cat((saved_state['prev_key'], k), dim=0)
if 'prev_value' in saved_state:
v = torch.cat((saved_state['prev_value'], v), dim=0)
saved_state['prev_key'] = k
saved_state['prev_value'] = v
self._set_input_buffer(incremental_state, saved_state)
src_len = k.size(0)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
q = q.contiguous().view(tgt_len, bsz*self.num_heads, self.head_dim).transpose(0, 1)
k = k.contiguous().view(src_len, bsz*self.num_heads, self.head_dim).transpose(0, 1)
v = v.contiguous().view(src_len, bsz*self.num_heads, self.head_dim).transpose(0, 1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
# only apply masking at training time (when incremental state is None)
if mask_future_timesteps and incremental_state is None:
assert query.size() == key.size(), \
'mask_future_timesteps only applies to self-attention'
attn_weights += self.buffered_mask(attn_weights).unsqueeze(0)
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.float().masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
).type_as(attn_weights) # FP16 support: cast to float and back
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = F.softmax(attn_weights.float(), dim=-1).type_as(attn_weights)
attn_weights = F.dropout(attn_weights, p=self.dropout, training=self.training)
attn = torch.bmm(attn_weights, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
# average attention weights over heads
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.sum(dim=1) / self.num_heads
return attn, attn_weights
def in_proj_qkv(self, query):
return self._in_proj(query).chunk(3, dim=-1)
def in_proj_kv(self, key):
return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1)
def in_proj_q(self, query):
return self._in_proj(query, end=self.embed_dim)
def in_proj_k(self, key):
return self._in_proj(key, start=self.embed_dim, end=2*self.embed_dim)
def in_proj_v(self, value):
return self._in_proj(value, start=2*self.embed_dim)
def _in_proj(self, input, start=None, end=None):
weight = self.in_proj_weight
bias = self.in_proj_bias
if end is not None:
weight = weight[:end, :]
if bias is not None:
bias = bias[:end]
if start is not None:
weight = weight[start:, :]
if bias is not None:
bias = bias[start:]
return F.linear(input, weight, bias)
def buffered_mask(self, tensor):
dim = tensor.size(-1)
if self._mask is None:
self._mask = torch.triu(fill_with_neg_inf(tensor.new(dim, dim)), 1)
if self._mask.size(0) < dim:
self._mask = torch.triu(fill_with_neg_inf(self._mask.resize_(dim, dim)), 1)
return self._mask[:dim, :dim]
def reorder_incremental_state(self, incremental_state, new_order):
"""Reorder buffered internal state (for incremental generation)."""
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer[k] = input_buffer[k].index_select(1, new_order)
self._set_input_buffer(incremental_state, input_buffer)
def _get_input_buffer(self, incremental_state):
return get_incremental_state(
self,
incremental_state,
'attn_state',
) or {}
def _set_input_buffer(self, incremental_state, buffer):
set_incremental_state(
self,
incremental_state,
'attn_state',
buffer,
)