# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from torchvision.models import resnet18, resnet50, resnet101, resnet152, vgg16, vgg19, inception_v3 import torch import torch.nn as nn import random import numpy as np class EncoderCNN(nn.Module): def __init__(self, embed_size, dropout=0.5, image_model='resnet101', pretrained=True): """Load the pretrained ResNet-152 and replace top fc layer.""" super(EncoderCNN, self).__init__() resnet = globals()[image_model](pretrained=pretrained) modules = list(resnet.children())[:-2] # delete the last fc layer. self.resnet = nn.Sequential(*modules) self.linear = nn.Sequential(nn.Conv2d(resnet.fc.in_features, embed_size, kernel_size=1, padding=0), nn.Dropout2d(dropout)) def forward(self, images, keep_cnn_gradients=False): """Extract feature vectors from input images.""" if keep_cnn_gradients: raw_conv_feats = self.resnet(images) else: with torch.no_grad(): raw_conv_feats = self.resnet(images) features = self.linear(raw_conv_feats) features = features.view(features.size(0), features.size(1), -1) return features class EncoderLabels(nn.Module): def __init__(self, embed_size, num_classes, dropout=0.5, embed_weights=None, scale_grad=False): super(EncoderLabels, self).__init__() embeddinglayer = nn.Embedding(num_classes, embed_size, padding_idx=num_classes-1, scale_grad_by_freq=scale_grad) if embed_weights is not None: embeddinglayer.weight.data.copy_(embed_weights) self.pad_value = num_classes - 1 self.linear = embeddinglayer self.dropout = dropout self.embed_size = embed_size def forward(self, x, onehot_flag=False): if onehot_flag: embeddings = torch.matmul(x, self.linear.weight) else: embeddings = self.linear(x) embeddings = nn.functional.dropout(embeddings, p=self.dropout, training=self.training) embeddings = embeddings.permute(0, 2, 1).contiguous() return embeddings