# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import sys import time import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.loss import _WeightedLoss device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') map_loc = None if torch.cuda.is_available() else 'cpu' class MaskedCrossEntropyCriterion(_WeightedLoss): def __init__(self, ignore_index=[-100], reduce=None): super(MaskedCrossEntropyCriterion, self).__init__() self.padding_idx = ignore_index self.reduce = reduce def forward(self, outputs, targets): lprobs = nn.functional.log_softmax(outputs, dim=-1) lprobs = lprobs.view(-1, lprobs.size(-1)) for idx in self.padding_idx: # remove padding idx from targets to allow gathering without error (padded entries will be suppressed later) targets[targets == idx] = 0 nll_loss = -lprobs.gather(dim=-1, index=targets.unsqueeze(1)) if self.reduce: nll_loss = nll_loss.sum() return nll_loss.squeeze() def softIoU(out, target, e=1e-6, sum_axis=1): num = (out*target).sum(sum_axis, True) den = (out+target-out*target).sum(sum_axis, True) + e iou = num / den return iou def update_error_types(error_types, y_pred, y_true): error_types['tp_i'] += (y_pred * y_true).sum(0).cpu().data.numpy() error_types['fp_i'] += (y_pred * (1-y_true)).sum(0).cpu().data.numpy() error_types['fn_i'] += ((1-y_pred) * y_true).sum(0).cpu().data.numpy() error_types['tn_i'] += ((1-y_pred) * (1-y_true)).sum(0).cpu().data.numpy() error_types['tp_all'] += (y_pred * y_true).sum().item() error_types['fp_all'] += (y_pred * (1-y_true)).sum().item() error_types['fn_all'] += ((1-y_pred) * y_true).sum().item() def compute_metrics(ret_metrics, error_types, metric_names, eps=1e-10, weights=None): if 'accuracy' in metric_names: ret_metrics['accuracy'].append(np.mean((error_types['tp_i'] + error_types['tn_i']) / (error_types['tp_i'] + error_types['fp_i'] + error_types['fn_i'] + error_types['tn_i']))) if 'jaccard' in metric_names: ret_metrics['jaccard'].append(error_types['tp_all'] / (error_types['tp_all'] + error_types['fp_all'] + error_types['fn_all'] + eps)) if 'dice' in metric_names: ret_metrics['dice'].append(2*error_types['tp_all'] / (2*(error_types['tp_all'] + error_types['fp_all'] + error_types['fn_all']) + eps)) if 'f1' in metric_names: pre = error_types['tp_i'] / (error_types['tp_i'] + error_types['fp_i'] + eps) rec = error_types['tp_i'] / (error_types['tp_i'] + error_types['fn_i'] + eps) f1_perclass = 2*(pre * rec) / (pre + rec + eps) if 'f1_ingredients' not in ret_metrics.keys(): ret_metrics['f1_ingredients'] = [np.average(f1_perclass, weights=weights)] else: ret_metrics['f1_ingredients'].append(np.average(f1_perclass, weights=weights)) pre = error_types['tp_all'] / (error_types['tp_all'] + error_types['fp_all'] + eps) rec = error_types['tp_all'] / (error_types['tp_all'] + error_types['fn_all'] + eps) f1 = 2*(pre * rec) / (pre + rec + eps) ret_metrics['f1'].append(f1)