Spaces:
Sleeping
Sleeping
# set path | |
import glob, os, sys; sys.path.append('/src') | |
#import helper | |
from src import preprocessing as pre | |
from src import cleaning as clean | |
#import needed libraries | |
import seaborn as sns | |
from pandas import DataFrame | |
from keybert import KeyBERT | |
from transformers import pipeline | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import streamlit as st | |
import pandas as pd | |
# needed for doc upload ... | |
import tempfile | |
def app(): | |
with st.container(): | |
st.markdown("<h1 style='text-align: center; color: black;'> Policy Action Tracking</h1>", unsafe_allow_html=True) | |
st.write(' ') | |
st.write(' ') | |
with st.expander("βΉοΈ - About this app", expanded=True): | |
st.write( | |
""" | |
The *Policy Action Tracker* app is an easy-to-use interface built in Streamlit for analyzing policy documents - developed by GIZ Data and the Sustainable Development Solution Network. | |
It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) π€ to create keywords/keyphrases that are most similar to a document. | |
""" | |
) | |
st.markdown("") | |
st.markdown("") | |
st.markdown("## π Step One: Upload document ") | |
with st.container(): | |
file = st.file_uploader('Upload PDF File', type=['pdf', 'docx', 'txt']) | |
if file is not None: | |
with tempfile.NamedTemporaryFile(mode="wb") as temp: | |
bytes_data = file.getvalue() | |
temp.write(bytes_data) | |
st.write("Filename: ", file.name) | |
# load document | |
docs = pre.load_document(temp.name, file) | |
# preprocess document | |
docs_processed, df, all_text, par_list = clean.preprocessing(docs) | |
# testing | |
# st.write(len(all_text)) | |
# for i in par_list: | |
# st.write(i) | |
def load_keyBert(): | |
return KeyBERT() | |
kw_model = load_keyBert() | |
keywords = kw_model.extract_keywords( | |
all_text, | |
keyphrase_ngram_range=(1, 2), | |
use_mmr=True, | |
stop_words="english", | |
top_n=15, | |
diversity=0.7, | |
) | |
st.markdown("## π What is my document about?") | |
df = ( | |
DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"]) | |
.sort_values(by="Relevancy", ascending=False) | |
.reset_index(drop=True) | |
) | |
df.index += 1 | |
# Add styling | |
cmGreen = sns.light_palette("green", as_cmap=True) | |
cmRed = sns.light_palette("red", as_cmap=True) | |
df = df.style.background_gradient( | |
cmap=cmGreen, | |
subset=[ | |
"Relevancy", | |
], | |
) | |
c1, c2, c3 = st.columns([1, 3, 1]) | |
format_dictionary = { | |
"Relevancy": "{:.1%}", | |
} | |
df = df.format(format_dictionary) | |
with c2: | |
st.table(df) | |
######## SDG classiciation | |
# @st.cache(allow_output_mutation=True) | |
# def load_sdgClassifier(): | |
# classifier = pipeline("text-classification", model= "../models/osdg_sdg/") | |
# return classifier | |
# load from disc (github repo) for performance boost | |
def load_sdgClassifier(): | |
classifier = pipeline("text-classification", model="jonas/sdg_classifier_osdg") | |
return classifier | |
classifier = load_sdgClassifier() | |
# # not needed, par list comes from pre_processing function already | |
# word_list = all_text.split() | |
# len_word_list = len(word_list) | |
# par_list = [] | |
# par_len = 130 | |
# for i in range(0,len_word_list // par_len): | |
# string_part = ' '.join(word_list[i*par_len:(i+1)*par_len]) | |
# par_list.append(string_part) | |
labels = classifier(par_list) | |
labels_= [(l['label'],l['score']) for l in labels] | |
df = DataFrame(labels_, columns=["SDG", "Relevancy"]) | |
df['text'] = par_list | |
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True) | |
df.index += 1 | |
df =df[df['Relevancy']>.85] | |
x = df['SDG'].value_counts() | |
plt.rcParams['font.size'] = 25 | |
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x))) | |
# plot | |
fig, ax = plt.subplots() | |
ax.pie(x, colors=colors, radius=2, center=(4, 4), | |
wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index)) | |
st.markdown("## π Anything related to SDGs?") | |
c4, c5, c6 = st.columns([5, 7, 1]) | |
# Add styling | |
cmGreen = sns.light_palette("green", as_cmap=True) | |
cmRed = sns.light_palette("red", as_cmap=True) | |
df = df.style.background_gradient( | |
cmap=cmGreen, | |
subset=[ | |
"Relevancy", | |
], | |
) | |
format_dictionary = { | |
"Relevancy": "{:.1%}", | |
} | |
df = df.format(format_dictionary) | |
with c4: | |
st.pyplot(fig) | |
with c5: | |
st.table(df) | |