Spaces:
Sleeping
Sleeping
File size: 8,080 Bytes
c1295ee 23a0a97 c1295ee c675a94 e287ecd c675a94 c1295ee e287ecd c1295ee f9fc8a8 c1295ee f9fc8a8 c1295ee c675a94 c1295ee c675a94 c1295ee c675a94 c1295ee c675a94 c1295ee c675a94 f9fc8a8 46617f4 c675a94 f655d6e e287ecd c675a94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import requests
import structlog
import openai
import os
import random
import tiktoken
import enum
import time
import retrying
import IPython.display as display
from base64 import b64decode
import base64
from io import BytesIO
import PIL
import PIL.Image
import PIL.ImageDraw
import PIL.ImageFont
import gradio as gr
import cachetools.func
logger = structlog.getLogger()
weather_api_key = os.environ['WEATHER_API']
openai.api_key = os.environ.get("OPENAI_KEY", None)
animals = [x.strip() for x in open('animals.txt').readlines()]
art_styles = [x.strip() for x in open('art_styles.txt').readlines()]
class Chat:
class Model(enum.Enum):
GPT3_5 = "gpt-3.5-turbo"
GPT_4 = "gpt-4"
def __init__(self, system, max_length=4096//2):
self._system = system
self._max_length = max_length
self._history = [
{"role": "system", "content": self._system},
]
@classmethod
def num_tokens_from_text(cls, text, model="gpt-3.5-turbo"):
"""Returns the number of tokens used by some text."""
encoding = tiktoken.encoding_for_model(model)
return len(encoding.encode(text))
@classmethod
def num_tokens_from_messages(cls, messages, model="gpt-3.5-turbo"):
"""Returns the number of tokens used by a list of messages."""
encoding = tiktoken.encoding_for_model(model)
num_tokens = 0
for message in messages:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
@retrying.retry(stop_max_attempt_number=5, wait_fixed=2000)
def _msg(self, *args, model=Model.GPT3_5.value, **kwargs):
return openai.ChatCompletion.create(
*args,
model=model,
messages=self._history,
**kwargs
)
def message(self, next_msg=None, **kwargs):
# TODO: Optimize this if slow through easy caching
while len(self._history) > 1 and self.num_tokens_from_messages(self._history) > self._max_length:
logger.info(f'Popping message: {self._history.pop(1)}')
if next_msg is not None:
self._history.append({"role": "user", "content": next_msg})
logger.info('requesting openai...')
resp = self._msg(**kwargs)
logger.info('received openai...')
text = resp.choices[0].message.content
self._history.append({"role": "assistant", "content": text})
return text
class Weather:
def __init__(self, zip_code='10001', api_key=weather_api_key):
self.zip_code = zip_code
self.api_key = api_key
def get_weather(self):
url = f"https://api.weatherapi.com/v1/forecast.json?q={self.zip_code}&days=1&lang=en&aqi=yes&key={self.api_key}"
headers = {'accept': 'application/json'}
return requests.get(url, headers=headers).json()
@cachetools.func.ttl_cache(maxsize=128, ttl=15*60)
def get_info(self):
weather = self.get_weather()
curr_hour = None
next_hour = None
for hour_data in weather['forecast']['forecastday'][0]["hour"]:
if abs(hour_data["time_epoch"] - time.time()) < 60 * 60:
if curr_hour is None: curr_hour = hour_data
next_hour = hour_data
return {
"now": weather["current"],
"day": weather["forecast"]["forecastday"][0]["day"],
"curr_hour": curr_hour,
"next_hour": next_hour,
}
class Image:
class Size(enum.Enum):
SMALL = "256x256"
MEDIUM = "512x512"
LARGE = "1024x1024"
@classmethod
@retrying.retry(stop_max_attempt_number=5, wait_fixed=2000)
def create(cls, prompt, n=1, size=Size.SMALL):
logger.info('requesting openai.Image...')
resp = openai.Image.create(prompt=prompt, n=n, size=size.value, response_format='b64_json')
logger.info('received openai.Image...')
if n == 1: return resp["data"][0]
return resp["data"]
def overlay_text_on_image(img, text, position, text_color=(255, 255, 255), box_color=(0, 0, 0, 128), decode=False):
# Convert the base64 string back to an image
if decode:
img_bytes = base64.b64decode(img)
img = PIL.Image.open(BytesIO(img_bytes))
# Get image dimensions
img_width, img_height = img.size
# Create a ImageDraw object
draw = PIL.ImageDraw.Draw(img)
# Reduce the font size until it fits the image width or height
l, r = 1, 50
while l < r:
font_size = (l + r) // 2
font = PIL.ImageFont.truetype("/System/Library/Fonts/NewYork.ttf", font_size)
left, upper, right, lower = draw.textbbox((0, 0), text, font=font)
text_width = right - left
text_height = lower - upper
if text_width <= img_width and text_height <= img_height:
l = font_size + 1
else:
r = font_size - 1
font_size = max(l-1, 1)
text_width, text_height = draw.textsize(text, font=font)
if position == 'top-left':
x, y = 0, 0
elif position == 'top-right':
x, y = img_width - text_width, 0
elif position == 'bottom-left':
x, y = 0, img_height - text_height
elif position == 'bottom-right':
x, y = img_width - text_width, img_height - text_height
else:
raise ValueError("Position should be 'top-left', 'top-right', 'bottom-left' or 'bottom-right'.")
# Draw a semi-transparent box around the text
draw.rectangle([x, y, x + text_width, y + text_height], fill=box_color)
# Draw the text on the image
draw.text((x, y), text, font=font, fill=text_color)
return img
class WeatherDraw:
def clean_text(self, weather_info):
chat = Chat("Given the following weather conditions, write a very small, concise plaintext summary that will overlay on top of an image.")
text = chat.message(str(weather_info))
return text
def generate_image(self, weather_info, **kwargs):
animal = random.choice(animals)
logger.info(f"Got animal {animal}")
chat = Chat(f'''
Given the following weather conditions, write a plaintext, short, and vivid description of an
adorable {animal} in the weather conditions doing a human activity matching the weather.
Only write the short description and nothing else.
Do not include specific numbers.'''.replace('\n', ' '))
description = chat.message(str(weather_info))
prompt = f'{description}. Adorable, cute, 4k, Award winning, in the style of {random.choice(art_styles)}'
logger.info(prompt)
img = Image.create(prompt, **kwargs)
return img["b64_json"], prompt
def step_one_forecast(self, weather_info, **kwargs):
img, txt = self.generate_image(weather_info, **kwargs)
# text = self.clean_text(weather_info)
# return overlay_text_on_image(img, text, 'bottom-left')
return img, txt
def step(self, zip_code='10001', **kwargs):
forecast = Weather(zip_code).get_info()
images, texts = [], []
for time, data in forecast.items():
img, txt = self.step_one_forecast(data, **kwargs)
images.append(overlay_text_on_image(img, time, 'top-right', decode=True))
texts.append(txt)
return create_collage(*images), *texts
# Define Gradio interface
iface = gr.Interface(fn=WeatherDraw().step,
inputs=gr.inputs.Textbox(label="Enter Zipcode"),
outputs=[gr.outputs.Image(type='pil'), "text", "text", "text", "text"],
title="US Zipcode Weather",
description="Enter a US Zipcode and get some weather.")
# Run the interface
iface.launch() |