Spaces:
Sleeping
Sleeping
File size: 12,273 Bytes
c1295ee 23a0a97 16d7056 c1295ee c675a94 e287ecd 95c34a4 971fe6b 655f886 c675a94 c1295ee 54d8281 95c34a4 c1295ee 655f886 c1295ee 655f886 c1295ee 655f886 c1295ee 6f0af06 655f886 c1295ee 655f886 c1295ee 971fe6b c1295ee f9fc8a8 c1295ee f9fc8a8 c1295ee 95c34a4 c1295ee f3eb3cf c1295ee 44c5944 5ad9f1e 20ff21e 5ad9f1e c1295ee 0ffd4d4 c1295ee c675a94 c1295ee c675a94 c1295ee c675a94 c1295ee 16d7056 655f886 16d7056 655f886 3ce46e4 16d7056 655f886 16d7056 c1295ee c675a94 971fe6b 655f886 971fe6b 16d7056 971fe6b b24c51f c675a94 f655d6e e287ecd c675a94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import requests
import structlog
import openai
import os
import io
import random
import tiktoken
import enum
import time
import retrying
import IPython.display as display
from base64 import b64decode
import base64
from io import BytesIO
import PIL
import PIL.Image
import PIL.ImageDraw
import PIL.ImageFont
import gradio as gr
import cachetools.func
from huggingface_hub import hf_hub_download
import concurrent.futures
import geopy
logger = structlog.getLogger()
weather_api_key = os.environ['WEATHER_API']
openai.api_key = os.environ.get("OPENAI_KEY", None)
animals = [x.strip() for x in open('animals.txt').readlines()]
art_styles = [x.strip() for x in open('art_styles.txt').readlines()]
font_path = hf_hub_download("jonathang/fonts-ttf", "Vogue.ttf")
@cachetools.cached(cache={})
def get_lat_long(zip):
loc = geopy.Nominatim(user_agent='weatherboy-gpt').geocode(str(zip))
return loc.latitude, loc.longitude
class Chat:
class Model(enum.Enum):
GPT3_5 = "gpt-3.5-turbo"
GPT_4 = "gpt-4"
def __init__(self, system, max_length=4096//2):
self._system = system
self._max_length = max_length
self._history = [
{"role": "system", "content": self._system},
]
@classmethod
def num_tokens_from_text(cls, text, model="gpt-3.5-turbo"):
"""Returns the number of tokens used by some text."""
encoding = tiktoken.encoding_for_model(model)
return len(encoding.encode(text))
@classmethod
def num_tokens_from_messages(cls, messages, model="gpt-3.5-turbo"):
"""Returns the number of tokens used by a list of messages."""
encoding = tiktoken.encoding_for_model(model)
num_tokens = 0
for message in messages:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
@retrying.retry(stop_max_attempt_number=5, wait_fixed=2000)
def _msg(self, *args, model=Model.GPT3_5.value, **kwargs):
return openai.ChatCompletion.create(
*args,
model=model,
messages=self._history,
**kwargs
)
def message(self, next_msg=None, **kwargs):
# TODO: Optimize this if slow through easy caching
while len(self._history) > 1 and self.num_tokens_from_messages(self._history) > self._max_length:
logger.info(f'Popping message: {self._history.pop(1)}')
if next_msg is not None:
self._history.append({"role": "user", "content": next_msg})
logger.info('requesting openai...')
resp = self._msg(**kwargs)
logger.info('received openai...')
text = resp.choices[0].message.content
self._history.append({"role": "assistant", "content": text})
return text
class Weather:
def __init__(self, zip_code='10001', api_key=weather_api_key):
self.zip_code = zip_code
self.api_key = api_key
@cachetools.func.ttl_cache(maxsize=128, ttl=15*60)
def get_weather(self):
lat, long = get_lat_long(self.zip_code)
url = f"https://forecast.weather.gov/MapClick.php?lat={lat:.2f}&lon={long:.2f}&unit=0&lg=english&FcstType=json"
headers = {'accept': 'application/json'}
return requests.get(url, headers=headers).json()
def get_info(self):
data = self.get_weather()
new_data = {}
new_data['now'] = data['currentobservation']
# The 'time' and 'data' keys seem to have hourly/daily data
# Assuming the first entry in these lists is for the current hour
new_data['hour'] = {
'time': data['time']['startValidTime'][0],
'tempLabel': data['time']['tempLabel'][0],
'temperature': data['data']['temperature'][0],
'pop': data['data']['pop'][0],
'weather': data['data']['weather'][0],
'iconLink': data['data']['iconLink'][0],
'text': data['data']['text'][0],
}
# And the rest of the 'time' and 'data' lists are for the rest of the day
new_data['day'] = {
'time': data['time']['startValidTime'][1:],
'tempLabel': data['time']['tempLabel'][1:],
'temperature': data['data']['temperature'][1:],
'pop': data['data']['pop'][1:],
'weather': data['data']['weather'][1:],
'iconLink': data['data']['iconLink'][1:],
'text': data['data']['text'][1:],
}
return new_data
class Image:
class Size(enum.Enum):
SMALL = "256x256"
MEDIUM = "512x512"
LARGE = "1024x1024"
@classmethod
@retrying.retry(stop_max_attempt_number=5, wait_fixed=2000)
def create(cls, prompt, n=1, size=Size.SMALL):
logger.info('requesting openai.Image...')
resp = openai.Image.create(prompt=prompt, n=n, size=size.value, response_format='b64_json')
logger.info('received openai.Image...')
if n == 1: return resp["data"][0]
return resp["data"]
def create_collage(image1, image2, image3, image4):
# assuming images are the same size
width, height = image1.size
new_img = PIL.Image.new('RGB', (2 * width, 2 * height))
# place images in collage image
new_img.paste(image1, (0,0))
new_img.paste(image2, (width, 0))
new_img.paste(image3, (0, height))
new_img.paste(image4, (width, height))
return new_img
def overlay_text_on_image(img, text, position, text_color=(255, 255, 255), box_color=(0, 0, 0, 128), decode=False):
# Convert the base64 string back to an image
if decode:
img_bytes = base64.b64decode(img)
img = PIL.Image.open(BytesIO(img_bytes))
# Get image dimensions
img_width, img_height = img.size
# Create a ImageDraw object
draw = PIL.ImageDraw.Draw(img)
# Reduce the font size until it fits the image width or height
l, r = 1, 50
while l < r:
font_size = (l + r) // 2
font = PIL.ImageFont.truetype(font_path, font_size)
left, upper, right, lower = draw.textbbox((0, 0), text, font=font)
text_width = right - left
text_height = lower - upper
if text_width <= img_width and text_height <= img_height:
l = font_size + 1
else:
r = font_size - 1
font_size = max(l-1, 1)
left, upper, right, lower = draw.textbbox((0, 0), text, font=font)
text_width = right - left
text_height = lower - upper
if position == 'top-left':
x, y = 0, 0
elif position == 'top-right':
x, y = img_width - text_width, 0
elif position == 'bottom-left':
x, y = 0, img_height - text_height
elif position == 'bottom-right':
x, y = img_width - text_width, img_height - text_height
else:
raise ValueError("Position should be 'top-left', 'top-right', 'bottom-left' or 'bottom-right'.")
# Draw a semi-transparent box around the text
draw.rectangle([x, y, x + text_width, y + text_height], fill=box_color)
# Draw the text on the image
draw.text((x, y), text, font=font, fill=text_color)
return img
class WeatherDraw:
def clean_text(self, weather_info):
chat = Chat("Given the following weather conditions, write a very small, concise plaintext summary that will overlay on top of an image.")
text = chat.message(str(weather_info))
return text
def generate_image(self, weather_info, **kwargs):
animal = random.choice(animals)
logger.info(f"Got animal {animal}")
chat = Chat(f'''Given
the following weather conditions, write a plaintext, short, and vivid description of an
image of an adorable anthropomorphised {animal} doing an activity in the weather.
The image should make obvious what the weather is.
The animal should be extremely anthropomorphised.
Only write the short description and nothing else.
Do not include specific numbers.'''.replace('\n', ' '))
description = chat.message(str(weather_info))
hd_modifiers = """3840x2160
8k 3D / 16k 3D
8k resolution / 16k resolution
Detailed
Ultra HD
Ultrafine detail
""".split('\n')
prompt = f'{random.choice(art_styles)} of {description} {random.choice(hd_modifiers)}'
logger.info(prompt)
img = Image.create(prompt, **kwargs)
return img["b64_json"], prompt
def step_one_forecast(self, weather_info, **kwargs):
img, txt = self.generate_image(weather_info, **kwargs)
# text = self.clean_text(weather_info)
# return overlay_text_on_image(img, text, 'bottom-left')
return img, txt
def weather_img(self, weather_data):
import io
# Create a new image with white background
image = PIL.Image.new('RGB', (256, 256), (255, 255, 255))
draw = PIL.ImageDraw.Draw(image)
# Load a font
font = PIL.ImageFont.truetype(font_path, 12)
# Draw text on the image
y_text = 5
items_to_display = {
'now': {'Temperature': weather_data['now']['Temp'],
'Condition': weather_data['now']['Weather'],},
'hour': {'Temperature': weather_data['hour']['temperature'],
'Condition': weather_data['hour']['weather']},
'day': {'High': max(weather_data['day']['temperature']),
'Low': min(weather_data['day']['temperature']),
'Condition': weather_data['day']['weather'][0]},
}
for category, values in items_to_display.items():
draw.text((5, y_text), category, font=font, fill=(0, 0, 0))
y_text += 15
for key, value in values.items():
text = f"{key}: {value}"
draw.text((10, y_text), text, font=font, fill=(0, 0, 0))
y_text += 15
# Download the weather condition icon for now, day and next hour
for index, time in enumerate(items_to_display.keys()):
if time == 'day':
icon_url = weather_data['day']['iconLink'][0]
elif time == 'now':
icon_url = 'https://forecast.weather.gov/newimages/medium/'+weather_data['now']['Weatherimage']
else:
icon_url = weather_data[time]['iconLink']
try:
response = requests.get(icon_url)
icon = PIL.Image.open(io.BytesIO(response.content))
except:
print(time, icon_url)
continue
# Resize the icon
icon = icon.resize((60, 60))
# Paste the icon on the image
image.paste(icon, (index*70 + 10, 190))
return image
def step(self, zip_code='10001', **kwargs):
forecast = Weather(zip_code).get_info()
images, texts = [], []
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as e:
runs = {}
for time, data in forecast.items():
if time == 'etc': continue
runs[e.submit(self.step_one_forecast, data, **kwargs)] = time, data
for r in concurrent.futures.as_completed(runs.keys()):
img, txt = r.result()
time, data = runs[r]
images.append(overlay_text_on_image(img, time, 'top-right', decode=True))
# images.append(overlay_text_on_image(img, '', 'top-right', decode=True))
texts.append(txt)
return create_collage(*images, self.weather_img(forecast)), *texts, str(forecast)
# Define Gradio interface
iface = gr.Interface(fn=WeatherDraw().step,
inputs=gr.inputs.Textbox(label="Enter Zipcode"),
outputs=[gr.outputs.Image(type='pil'), "text", "text", "text", "text"],
title="US Zipcode Weather",
description="Enter a US Zipcode and get some weather.")
# Run the interface
iface.launch() |