import requests import structlog import openai import os import random import tiktoken import enum import time import retrying import IPython.display as display from base64 import b64decode import base64 from io import BytesIO import PIL import PIL.Image import PIL.ImageDraw import PIL.ImageFont import gradio as gr import cachetools.func logger = structlog.getLogger() weather_api_key = os.environ['WEATHER_API'] openai.api_key = os.environ.get("OPENAI_KEY", None) animals = [x.strip() for x in open('animals.txt').readlines()] art_styles = [x.strip() for x in open('art_styles.txt').readlines()] class Chat: class Model(enum.Enum): GPT3_5 = "gpt-3.5-turbo" GPT_4 = "gpt-4" def __init__(self, system, max_length=4096//2): self._system = system self._max_length = max_length self._history = [ {"role": "system", "content": self._system}, ] @classmethod def num_tokens_from_text(cls, text, model="gpt-3.5-turbo"): """Returns the number of tokens used by some text.""" encoding = tiktoken.encoding_for_model(model) return len(encoding.encode(text)) @classmethod def num_tokens_from_messages(cls, messages, model="gpt-3.5-turbo"): """Returns the number of tokens used by a list of messages.""" encoding = tiktoken.encoding_for_model(model) num_tokens = 0 for message in messages: num_tokens += 4 # every message follows {role/name}\n{content}\n for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": # if there's a name, the role is omitted num_tokens += -1 # role is always required and always 1 token num_tokens += 2 # every reply is primed with assistant return num_tokens @retrying.retry(stop_max_attempt_number=5, wait_fixed=2000) def _msg(self, *args, model=Model.GPT3_5.value, **kwargs): return openai.ChatCompletion.create( *args, model=model, messages=self._history, **kwargs ) def message(self, next_msg=None, **kwargs): # TODO: Optimize this if slow through easy caching while len(self._history) > 1 and self.num_tokens_from_messages(self._history) > self._max_length: logger.info(f'Popping message: {self._history.pop(1)}') if next_msg is not None: self._history.append({"role": "user", "content": next_msg}) logger.info('requesting openai...') resp = self._msg(**kwargs) logger.info('received openai...') text = resp.choices[0].message.content self._history.append({"role": "assistant", "content": text}) return text class Weather: def __init__(self, zip_code='10001', api_key=weather_api_key): self.zip_code = zip_code self.api_key = api_key def get_weather(self): url = f"https://api.weatherapi.com/v1/forecast.json?q={self.zip_code}&days=1&lang=en&aqi=yes&key={self.api_key}" headers = {'accept': 'application/json'} return requests.get(url, headers=headers).json() @cachetools.func.ttl_cache(maxsize=128, ttl=15*60) def get_info(self): weather = self.get_weather() curr_hour = None next_hour = None for hour_data in weather['forecast']['forecastday'][0]["hour"]: if abs(hour_data["time_epoch"] - time.time()) < 60 * 60: if curr_hour is None: curr_hour = hour_data next_hour = hour_data return { "now": weather["current"], "day": weather["forecast"]["forecastday"][0]["day"], "curr_hour": curr_hour, "next_hour": next_hour, } class Image: class Size(enum.Enum): SMALL = "256x256" MEDIUM = "512x512" LARGE = "1024x1024" @classmethod @retrying.retry(stop_max_attempt_number=5, wait_fixed=2000) def create(cls, prompt, n=1, size=Size.SMALL): logger.info('requesting openai.Image...') resp = openai.Image.create(prompt=prompt, n=n, size=size.value, response_format='b64_json') logger.info('received openai.Image...') if n == 1: return resp["data"][0] return resp["data"] def overlay_text_on_image(img, text, position, text_color=(255, 255, 255), box_color=(0, 0, 0, 128), decode=False): # Convert the base64 string back to an image if decode: img_bytes = base64.b64decode(img) img = PIL.Image.open(BytesIO(img_bytes)) # Get image dimensions img_width, img_height = img.size # Create a ImageDraw object draw = PIL.ImageDraw.Draw(img) # Reduce the font size until it fits the image width or height l, r = 1, 50 while l < r: font_size = (l + r) // 2 font = PIL.ImageFont.truetype("/System/Library/Fonts/NewYork.ttf", font_size) left, upper, right, lower = draw.textbbox((0, 0), text, font=font) text_width = right - left text_height = lower - upper if text_width <= img_width and text_height <= img_height: l = font_size + 1 else: r = font_size - 1 font_size = max(l-1, 1) text_width, text_height = draw.textsize(text, font=font) if position == 'top-left': x, y = 0, 0 elif position == 'top-right': x, y = img_width - text_width, 0 elif position == 'bottom-left': x, y = 0, img_height - text_height elif position == 'bottom-right': x, y = img_width - text_width, img_height - text_height else: raise ValueError("Position should be 'top-left', 'top-right', 'bottom-left' or 'bottom-right'.") # Draw a semi-transparent box around the text draw.rectangle([x, y, x + text_width, y + text_height], fill=box_color) # Draw the text on the image draw.text((x, y), text, font=font, fill=text_color) return img class WeatherDraw: def clean_text(self, weather_info): chat = Chat("Given the following weather conditions, write a very small, concise plaintext summary that will overlay on top of an image.") text = chat.message(str(weather_info)) return text def generate_image(self, weather_info, **kwargs): animal = random.choice(animals) logger.info(f"Got animal {animal}") chat = Chat(f''' Given the following weather conditions, write a plaintext, short, and vivid description of an adorable {animal} in the weather conditions doing a human activity matching the weather. Only write the short description and nothing else. Do not include specific numbers.'''.replace('\n', ' ')) description = chat.message(str(weather_info)) prompt = f'{description}. Adorable, cute, 4k, Award winning, in the style of {random.choice(art_styles)}' logger.info(prompt) img = Image.create(prompt, **kwargs) return img["b64_json"], prompt def step_one_forecast(self, weather_info, **kwargs): img, txt = self.generate_image(weather_info, **kwargs) # text = self.clean_text(weather_info) # return overlay_text_on_image(img, text, 'bottom-left') return img, txt def step(self, zip_code='10001', **kwargs): forecast = Weather(zip_code).get_info() images, texts = [], [] for time, data in forecast.items(): img, txt = self.step_one_forecast(data, **kwargs) images.append(overlay_text_on_image(img, time, 'top-right', decode=True)) texts.append(txt) return create_collage(*images), *texts # Define Gradio interface iface = gr.Interface(fn=WeatherDraw().step, inputs=gr.inputs.Textbox(label="Enter Zipcode"), outputs=[gr.outputs.Image(type='pil'), "text", "text", "text", "text"], title="US Zipcode Weather", description="Enter a US Zipcode and get some weather.") # Run the interface iface.launch()