Spaces:
Runtime error
Runtime error
File size: 7,910 Bytes
26a53be 06220ce 26a53be 06220ce 70fb0ac f28083c 06220ce ad6dc1b 06220ce 70fb0ac 06220ce f28083c 06220ce 26a53be f28083c 26a53be f28083c 26a53be f28083c 26a53be f28083c 26a53be f28083c 26a53be f28083c 26a53be f28083c df0fca1 f28083c 7ca2266 f28083c df0fca1 26a53be f28083c 26a53be f28083c 26a53be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gradio as gr
from huggingface_hub import hf_hub_download
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
import os
import pickle
import numpy as np
import torch
import torch.nn.functional as F
from collections import OrderedDict
from onmt_modules.misc import sequence_mask
from model_autopst import Generator_2 as Predictor
from hparams_autopst import hparams
from model_sea import Generator
from hparams_sea import hparams as sea_hparams
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
P = Predictor(hparams).eval().to(device)
checkpoint = torch.load(hf_hub_download(repo_id="jonathanjordan21/AutoPST", filename='580000-P.ckpt'), map_location=lambda storage, loc: storage)
P.load_state_dict(checkpoint['model'], strict=True)
print('Loaded predictor .....................................................')
dict_test = pickle.load(open('./assets/test_vctk.meta', 'rb'))
spect_vc = OrderedDict()
uttrs = [('p231', 'p270', '001'),
('p270', 'p231', '001'),
('p231', 'p245', '003001'),
('p245', 'p231', '003001'),
('p239', 'p270', '024002'),
('p270', 'p239', '024002')]
for uttr in uttrs:
cep_real, spk_emb = dict_test[uttr[0]][uttr[2]]
cep_real_A = torch.from_numpy(cep_real).unsqueeze(0).to(device)
len_real_A = torch.tensor(cep_real_A.size(1)).unsqueeze(0).to(device)
real_mask_A = sequence_mask(len_real_A, cep_real_A.size(1)).float()
_, spk_emb = dict_test[uttr[1]][uttr[2]]
spk_emb_B = torch.from_numpy(spk_emb).unsqueeze(0).to(device)
with torch.no_grad():
spect_output, len_spect = P.infer_onmt(cep_real_A.transpose(2,1)[:,:14,:],
real_mask_A,
len_real_A,
spk_emb_B)
uttr_tgt = spect_output[:len_spect[0],0,:].cpu().numpy()
spect_vc[f'{uttr[0]}_{uttr[1]}_{uttr[2]}'] = uttr_tgt
# spectrogram to waveform
# Feel free to use other vocoders
# This cell requires some preparation to work, please see the corresponding part in AutoVC
import torch
import librosa
import pickle
import os
from synthesis import build_model
from synthesis import wavegen
model = build_model().to(device)
checkpoint = torch.load(hf_hub_download(repo_id="jonathanjordan21/AutoPST", filename="checkpoint_step001000000_ema.pth"), map_location=torch.device('cpu'))
model.load_state_dict(checkpoint["state_dict"])
# sea_checkpoint = torch.load(hf_hub_download(repo_id="jonathanjordan21/AutoPST", filename='sea.ckpt'), map_location=lambda storage, loc: storage)
# gen =Generator(sea_hparams)
# gen.load_state_dict(sea_checkpoint['model'], strict=True)
# for name, sp in spect_vc.items():
# print(name)
# waveform = wavegen(model, c=sp)
# librosa.output.write_wav('./assets/'+name+'.wav', waveform, sr=16000)
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
import os
import pickle
import numpy as np
import soundfile as sf
from scipy import signal
from scipy.signal import get_window
from librosa.filters import mel
from numpy.random import RandomState
def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def pySTFT(x, fft_length=1024, hop_length=256):
x = np.pad(x, int(fft_length//2), mode='reflect')
noverlap = fft_length - hop_length
shape = x.shape[:-1]+((x.shape[-1]-noverlap)//hop_length, fft_length)
strides = x.strides[:-1]+(hop_length*x.strides[-1], x.strides[-1])
result = np.lib.stride_tricks.as_strided(x, shape=shape,
strides=strides)
fft_window = get_window('hann', fft_length, fftbins=True)
result = np.fft.rfft(fft_window * result, n=fft_length).T
return np.abs(result)
def create_sp(cep_real, spk_emb):
# cep_real, spk_emb = dict_test[uttr[0]][uttr[2]]
cep_real_A = torch.from_numpy(cep_real).unsqueeze(0).to(device)
len_real_A = torch.tensor(cep_real_A.size(1)).unsqueeze(0).to(device)
real_mask_A = sequence_mask(len_real_A, cep_real_A.size(1)).float()
# _, spk_emb = dict_test[uttr[1]][uttr[2]]
spk_emb_B = torch.from_numpy(spk_emb).unsqueeze(0).to(device)
with torch.no_grad():
spect_output, len_spect = P.infer_onmt(cep_real_A.transpose(2,1)[:,:14,:],
real_mask_A,
len_real_A,
spk_emb_B)
uttr_tgt = spect_output[:len_spect[0],0,:].cpu().numpy()
return uttr_tgt
def create_mel(x):
mel_basis = mel(sr=16000, n_fft=1024, fmin=90, fmax=7600, n_mels=80).T
min_level = np.exp(-100 / 20 * np.log(10))
b, a = butter_highpass(30, 16000, order=5)
mfcc_mean, mfcc_std, dctmx = pickle.load(open('assets/mfcc_stats.pkl', 'rb'))
spk2emb = pickle.load(open('assets/spk2emb_82.pkl', 'rb'))
if x.shape[0] % 256 == 0:
x = np.concatenate((x, np.array([1e-06])), axis=0)
y = signal.filtfilt(b, a, x)
D = pySTFT(y * 0.96).T
D_mel = np.dot(D, mel_basis)
D_db = 20 * np.log10(np.maximum(min_level, D_mel))
# mel sp
S = (D_db + 80) / 100
# mel cep
cc_tmp = S.dot(dctmx)
cc_norm = (cc_tmp - mfcc_mean) / mfcc_std
S = np.clip(S, 0, 1)
# teacher code
# cc_torch = torch.from_numpy(cc_norm[:,0:20].astype(np.float32)).unsqueeze(0).to(device)
# with torch.no_grad():
# codes = gen.encode(cc_torch, torch.ones_like(cc_torch[:,:,0])).squeeze(0)
return S, cc_norm
def transcribe(audio, spk):
sr, y = audio
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
y = y.astype(np.float32)
y /= np.max(np.abs(y))
spk_emb = np.zeros((82,))
spk_emb[int(spk)-1] = 1
mel_sp, mel_cep = create_mel(y)
sp = create_sp(mel_cep, spk_emb)
waveform = wavegen(model, c=sp)
return 16000, waveform
# return transcriber({"sampling_rate": sr, "raw": y})["text"]
demo = gr.Interface(
transcribe,
[
gr.Audio(),
gr.Slider(1, 82, value=21, label="Count", step=1, info="Choose between 1 and 82")
],
"audio",
)
if __name__ == "__main__":
demo.launch() |