Spaces:
Runtime error
Runtime error
File size: 9,029 Bytes
7ce5feb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from utils import filter_bank_mean
from fast_decoders import DecodeFunc_Sp
from model_sea import Encoder_2 as Encoder_Code_2
from override_decoder import OnmtDecoder_1 as OnmtDecoder
from onmt_modules.misc import sequence_mask
from onmt_modules.embeddings import PositionalEncoding
from onmt_modules.encoder_transformer import TransformerEncoder as OnmtEncoder
class Prenet(nn.Module):
def __init__(self, dim_input, dim_output, dropout=0.1):
super().__init__()
mlp = nn.Linear(dim_input, dim_output, bias=True)
pe = PositionalEncoding(dropout, dim_output, 1600)
self.make_prenet = nn.Sequential()
self.make_prenet.add_module('mlp', mlp)
self.make_prenet.add_module('pe', pe)
self.word_padding_idx = 1
def forward(self, source, step=None):
for i, module in enumerate(self.make_prenet._modules.values()):
if i == len(self.make_prenet._modules.values()) - 1:
source = module(source, step=step)
else:
source = module(source)
return source
class Decoder_Sp(nn.Module):
"""
Speech Decoder
"""
def __init__(self, hparams):
super().__init__()
self.dim_freq = hparams.dim_freq
self.max_decoder_steps = hparams.dec_steps_sp
self.gate_threshold = hparams.gate_threshold
prenet = Prenet(hparams.dim_freq, hparams.dec_rnn_size)
self.decoder = OnmtDecoder.from_opt(hparams, prenet)
self.postnet = nn.Linear(hparams.dec_rnn_size,
hparams.dim_freq+1, bias=True)
def forward(self, tgt, tgt_lengths, memory_bank, memory_lengths):
dec_outs, attns = self.decoder(tgt, memory_bank, step=None,
memory_lengths=memory_lengths,
tgt_lengths=tgt_lengths)
spect_gate = self.postnet(dec_outs)
spect, gate = spect_gate[:, :, 1:], spect_gate[:, :, :1]
return spect, gate
class Encoder_Tx_Spk(nn.Module):
"""
Text Encoder
"""
def __init__(self, hparams):
super().__init__()
prenet = Prenet(hparams.dim_code+hparams.dim_spk,
hparams.enc_rnn_size)
self.encoder = OnmtEncoder.from_opt(hparams, prenet)
def forward(self, src, src_lengths, spk_emb):
spk_emb = spk_emb.unsqueeze(0).expand(src.size(0),-1,-1)
src_spk = torch.cat((src, spk_emb), dim=-1)
enc_states, memory_bank, src_lengths = self.encoder(src_spk, src_lengths)
return enc_states, memory_bank, src_lengths
class Decoder_Tx(nn.Module):
"""
Text Decoder with stop
and num_rep prediction
"""
def __init__(self, hparams):
super().__init__()
self.dim_code = hparams.dim_code
self.max_decoder_steps = hparams.dec_steps_tx
self.gate_threshold = hparams.gate_threshold
self.dim_rep = hparams.dim_rep
prenet = Prenet(hparams.dim_code, hparams.dec_rnn_size)
self.decoder = OnmtDecoder.from_opt(hparams, prenet)
self.postnet_1 = nn.Linear(hparams.dec_rnn_size,
hparams.dim_code+1, bias=True)
self.postnet_2 = nn.Linear(hparams.dec_rnn_size,
self.dim_rep, bias=True)
def forward(self, tgt, tgt_lengths, memory_bank, memory_lengths):
dec_outs, attns = self.decoder(tgt, memory_bank, step=None,
memory_lengths=memory_lengths,
tgt_lengths=tgt_lengths)
gate_text = self.postnet_1(dec_outs)
rep = self.postnet_2(dec_outs)
gate, text = gate_text[:, :, :1], gate_text[:, :, 1:]
return text, gate, rep
class Generator_1(nn.Module):
'''
sync stage 1
'''
def __init__(self, hparams):
super().__init__()
self.encoder_cd = Encoder_Code_2(hparams)
self.encoder_tx = Encoder_Tx_Spk(hparams)
self.decoder_sp = Decoder_Sp(hparams)
self.encoder_spk = nn.Linear(hparams.dim_spk,
hparams.enc_rnn_size, bias=True)
self.fast_dec_sp = DecodeFunc_Sp(hparams, 'Sp')
def pad_sequences_rnn(self, cd_short, num_rep, len_long):
B, L, C = cd_short.size()
out_tensor = torch.zeros((B, len_long.max(), C), device=cd_short.device)
'''
len_long = len_spect + 1
'''
for i in range(B):
code_sync = cd_short[i].repeat_interleave(num_rep[i], dim=0)
out_tensor[i, :len_long[i]-1, :] = code_sync
return out_tensor
def forward(self, cep_in, mask_long, codes_mask, num_rep, len_short,
tgt_spect, len_spect,
spk_emb):
cd_long = self.encoder_cd(cep_in, mask_long)
fb = filter_bank_mean(num_rep, codes_mask, cd_long.size(1))
cd_short = torch.bmm(fb.detach(), cd_long)
cd_short_sync = self.pad_sequences_rnn(cd_short, num_rep, len_spect)
spk_emb_1 = self.encoder_spk(spk_emb)
# text to speech
_, memory_tx, _ = self.encoder_tx(cd_short_sync.transpose(1,0), len_spect,
spk_emb)
memory_tx_spk = torch.cat((spk_emb_1.unsqueeze(0), memory_tx), dim=0)
self.decoder_sp.decoder.init_state(memory_tx_spk, None, None)
spect_out, gate_sp_out \
= self.decoder_sp(tgt_spect, len_spect, memory_tx_spk, len_spect+1)
return spect_out, gate_sp_out
def infer_onmt(self, cep_in, mask_long,
len_spect,
spk_emb):
cd_long = self.encoder_cd(cep_in, mask_long)
spk_emb_1 = self.encoder_spk(spk_emb)
# text to speech
_, memory_tx, _ = self.encoder_tx(cd_long.transpose(1,0), len_spect,
spk_emb)
memory_tx_spk = torch.cat((spk_emb_1.unsqueeze(0), memory_tx), dim=0)
self.decoder_sp.decoder.init_state(memory_tx_spk, None, None)
spect_output, len_spect_out, stop_sp_output \
= self.fast_dec_sp.infer(None, memory_tx_spk, len_spect+1,
self.decoder_sp.decoder,
self.decoder_sp.postnet)
return spect_output, len_spect_out
class Generator_2(nn.Module):
'''
async stage 2
'''
def __init__(self, hparams):
super().__init__()
self.encoder_cd = Encoder_Code_2(hparams)
self.encoder_tx = Encoder_Tx_Spk(hparams)
self.decoder_sp = Decoder_Sp(hparams)
self.encoder_spk = nn.Linear(hparams.dim_spk,
hparams.enc_rnn_size, bias=True)
self.fast_dec_sp = DecodeFunc_Sp(hparams, 'Sp')
def forward(self, cep_in, mask_long, codes_mask, num_rep, len_short,
tgt_spect, len_spect,
spk_emb):
cd_long = self.encoder_cd(cep_in, mask_long)
fb = filter_bank_mean(num_rep, codes_mask, cd_long.size(1))
cd_short = torch.bmm(fb.detach(), cd_long.detach())
spk_emb_1 = self.encoder_spk(spk_emb)
# text to speech
_, memory_tx, _ = self.encoder_tx(cd_short.transpose(1,0), len_short,
spk_emb)
memory_tx_spk = torch.cat((spk_emb_1.unsqueeze(0), memory_tx), dim=0)
self.decoder_sp.decoder.init_state(memory_tx_spk, None, None)
spect_out, gate_sp_out \
= self.decoder_sp(tgt_spect, len_spect, memory_tx_spk, len_short+1)
return spect_out, gate_sp_out
def infer_onmt(self, cep_in, mask_long, len_spect,
spk_emb):
cd_long = self.encoder_cd(cep_in, mask_long)
spk_emb_1 = self.encoder_spk(spk_emb)
# text to speech
_, memory_tx, _ = self.encoder_tx(cd_long.transpose(1,0), len_spect,
spk_emb)
memory_tx_spk = torch.cat((spk_emb_1.unsqueeze(0), memory_tx), dim=0)
self.decoder_sp.decoder.init_state(memory_tx_spk, None, None)
spect_output, len_spect_out, stop_sp_output \
= self.fast_dec_sp.infer(None, memory_tx_spk, len_spect+1,
self.decoder_sp.decoder,
self.decoder_sp.postnet)
return spect_output, len_spect_out |