Spaces:
Runtime error
Runtime error
File size: 14,493 Bytes
c021d8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
"""
Implementation of "Attention is All You Need"
"""
import torch
import torch.nn as nn
from .decoder import DecoderBase
from .multi_headed_attn import MultiHeadedAttention
from .average_attn import AverageAttention
from .position_ffn import PositionwiseFeedForward
from .misc import sequence_mask
class TransformerDecoderLayer(nn.Module):
"""Transformer Decoder layer block in Pre-Norm style.
Pre-Norm style is an improvement w.r.t. Original paper's Post-Norm style,
providing better converge speed and performance. This is also the actual
implementation in tensor2tensor and also avalable in fairseq.
See https://tunz.kr/post/4 and :cite:`DeeperTransformer`.
.. mermaid::
graph LR
%% "*SubLayer" can be self-attn, src-attn or feed forward block
A(input) --> B[Norm]
B --> C["*SubLayer"]
C --> D[Drop]
D --> E((+))
A --> E
E --> F(out)
Args:
d_model (int): the dimension of keys/values/queries in
:class:`MultiHeadedAttention`, also the input size of
the first-layer of the :class:`PositionwiseFeedForward`.
heads (int): the number of heads for MultiHeadedAttention.
d_ff (int): the second-layer of the :class:`PositionwiseFeedForward`.
dropout (float): dropout in residual, self-attn(dot) and feed-forward
attention_dropout (float): dropout in context_attn (and self-attn(avg))
self_attn_type (string): type of self-attention scaled-dot, average
max_relative_positions (int):
Max distance between inputs in relative positions representations
aan_useffn (bool): Turn on the FFN layer in the AAN decoder
full_context_alignment (bool):
whether enable an extra full context decoder forward for alignment
alignment_heads (int):
N. of cross attention heads to use for alignment guiding
"""
def __init__(self, d_model, heads, d_ff, dropout, attention_dropout,
self_attn_type="scaled-dot", max_relative_positions=0,
aan_useffn=False, full_context_alignment=False,
alignment_heads=0):
super(TransformerDecoderLayer, self).__init__()
if self_attn_type == "scaled-dot":
self.self_attn = MultiHeadedAttention(
heads, d_model, dropout=attention_dropout,
max_relative_positions=max_relative_positions)
elif self_attn_type == "average":
self.self_attn = AverageAttention(d_model,
dropout=attention_dropout,
aan_useffn=aan_useffn)
self.context_attn = MultiHeadedAttention(
heads, d_model, dropout=attention_dropout)
self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
self.drop = nn.Dropout(dropout)
self.full_context_alignment = full_context_alignment
self.alignment_heads = alignment_heads
def forward(self, *args, **kwargs):
""" Extend `_forward` for (possibly) multiple decoder pass:
Always a default (future masked) decoder forward pass,
Possibly a second future aware decoder pass for joint learn
full context alignement, :cite:`garg2019jointly`.
Args:
* All arguments of _forward.
with_align (bool): whether return alignment attention.
Returns:
(FloatTensor, FloatTensor, FloatTensor or None):
* output ``(batch_size, T, model_dim)``
* top_attn ``(batch_size, T, src_len)``
* attn_align ``(batch_size, T, src_len)`` or None
"""
with_align = kwargs.pop('with_align', False)
output, attns = self._forward(*args, **kwargs)
top_attn = attns[:, 0, :, :].contiguous()
attn_align = None
if with_align:
if self.full_context_alignment:
# return _, (B, Q_len, K_len)
_, attns = self._forward(*args, **kwargs, future=True)
if self.alignment_heads > 0:
attns = attns[:, :self.alignment_heads, :, :].contiguous()
# layer average attention across heads, get ``(B, Q, K)``
# Case 1: no full_context, no align heads -> layer avg baseline
# Case 2: no full_context, 1 align heads -> guided align
# Case 3: full_context, 1 align heads -> full cte guided align
attn_align = attns.mean(dim=1)
return output, top_attn, attn_align
def _forward(self, inputs, memory_bank, src_pad_mask, tgt_pad_mask,
layer_cache=None, step=None, future=False):
""" A naive forward pass for transformer decoder.
# T: could be 1 in the case of stepwise decoding or tgt_len
Args:
inputs (FloatTensor): ``(batch_size, T, model_dim)``
memory_bank (FloatTensor): ``(batch_size, src_len, model_dim)``
src_pad_mask (LongTensor): ``(batch_size, 1, src_len)``
tgt_pad_mask (LongTensor): ``(batch_size, 1, T)``
layer_cache (dict or None): cached layer info when stepwise decode
step (int or None): stepwise decoding counter
future (bool): If set True, do not apply future_mask.
Returns:
(FloatTensor, FloatTensor):
* output ``(batch_size, T, model_dim)``
* attns ``(batch_size, head, T, src_len)``
"""
dec_mask = None
if step is None:
tgt_len = tgt_pad_mask.size(-1)
if not future: # apply future_mask, result mask in (B, T, T)
future_mask = torch.ones(
[tgt_len, tgt_len],
device=tgt_pad_mask.device,
dtype=torch.uint8)
future_mask = future_mask.triu_(1).view(1, tgt_len, tgt_len)
# BoolTensor was introduced in pytorch 1.2
try:
future_mask = future_mask.bool()
except AttributeError:
pass
dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)
else: # only mask padding, result mask in (B, 1, T)
dec_mask = tgt_pad_mask
input_norm = self.layer_norm_1(inputs)
if isinstance(self.self_attn, MultiHeadedAttention):
query, _ = self.self_attn(input_norm, input_norm, input_norm,
mask=dec_mask,
layer_cache=layer_cache,
attn_type="self")
elif isinstance(self.self_attn, AverageAttention):
query, _ = self.self_attn(input_norm, mask=dec_mask,
layer_cache=layer_cache, step=step)
query = self.drop(query) + inputs
query_norm = self.layer_norm_2(query)
mid, attns = self.context_attn(memory_bank, memory_bank, query_norm,
mask=src_pad_mask,
layer_cache=layer_cache,
attn_type="context")
output = self.feed_forward(self.drop(mid) + query)
return output, attns
def update_dropout(self, dropout, attention_dropout):
self.self_attn.update_dropout(attention_dropout)
self.context_attn.update_dropout(attention_dropout)
self.feed_forward.update_dropout(dropout)
self.drop.p = dropout
class TransformerDecoder(DecoderBase):
"""The Transformer decoder from "Attention is All You Need".
:cite:`DBLP:journals/corr/VaswaniSPUJGKP17`
.. mermaid::
graph BT
A[input]
B[multi-head self-attn]
BB[multi-head src-attn]
C[feed forward]
O[output]
A --> B
B --> BB
BB --> C
C --> O
Args:
num_layers (int): number of encoder layers.
d_model (int): size of the model
heads (int): number of heads
d_ff (int): size of the inner FF layer
copy_attn (bool): if using a separate copy attention
self_attn_type (str): type of self-attention scaled-dot, average
dropout (float): dropout in residual, self-attn(dot) and feed-forward
attention_dropout (float): dropout in context_attn (and self-attn(avg))
embeddings (onmt.modules.Embeddings):
embeddings to use, should have positional encodings
max_relative_positions (int):
Max distance between inputs in relative positions representations
aan_useffn (bool): Turn on the FFN layer in the AAN decoder
full_context_alignment (bool):
whether enable an extra full context decoder forward for alignment
alignment_layer (int): N° Layer to supervise with for alignment guiding
alignment_heads (int):
N. of cross attention heads to use for alignment guiding
"""
def __init__(self, num_layers, d_model, heads, d_ff,
copy_attn, self_attn_type, dropout, attention_dropout,
embeddings, max_relative_positions, aan_useffn,
full_context_alignment, alignment_layer,
alignment_heads):
super(TransformerDecoder, self).__init__()
self.embeddings = embeddings
# Decoder State
self.state = {}
self.transformer_layers = nn.ModuleList(
[TransformerDecoderLayer(d_model, heads, d_ff, dropout,
attention_dropout, self_attn_type=self_attn_type,
max_relative_positions=max_relative_positions,
aan_useffn=aan_useffn,
full_context_alignment=full_context_alignment,
alignment_heads=alignment_heads)
for i in range(num_layers)])
# previously, there was a GlobalAttention module here for copy
# attention. But it was never actually used -- the "copy" attention
# just reuses the context attention.
self._copy = copy_attn
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
self.alignment_layer = alignment_layer
@classmethod
def from_opt(cls, opt, embeddings):
"""Alternate constructor."""
return cls(
opt.dec_layers,
opt.dec_rnn_size,
opt.heads,
opt.transformer_ff,
opt.copy_attn,
opt.self_attn_type,
opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
opt.attention_dropout[0] if type(opt.attention_dropout)
is list else opt.dropout,
embeddings,
opt.max_relative_positions,
opt.aan_useffn,
opt.full_context_alignment,
opt.alignment_layer,
alignment_heads=opt.alignment_heads)
def init_state(self, src, memory_bank, enc_hidden):
"""Initialize decoder state."""
self.state["src"] = src
self.state["cache"] = None
def map_state(self, fn):
def _recursive_map(struct, batch_dim=0):
for k, v in struct.items():
if v is not None:
if isinstance(v, dict):
_recursive_map(v)
else:
struct[k] = fn(v, batch_dim)
self.state["src"] = fn(self.state["src"], 1)
if self.state["cache"] is not None:
_recursive_map(self.state["cache"])
def detach_state(self):
self.state["src"] = self.state["src"].detach()
def forward(self, tgt, memory_bank, step=None, **kwargs):
"""Decode, possibly stepwise."""
if step == 0:
self._init_cache(memory_bank)
tgt_words = tgt[:, :, 0].transpose(0, 1)
emb = self.embeddings(tgt, step=step)
assert emb.dim() == 3 # len x batch x embedding_dim
output = emb.transpose(0, 1).contiguous()
src_memory_bank = memory_bank.transpose(0, 1).contiguous()
pad_idx = self.embeddings.word_padding_idx
src_lens = kwargs["memory_lengths"]
src_max_len = self.state["src"].shape[0]
src_pad_mask = ~sequence_mask(src_lens, src_max_len).unsqueeze(1)
tgt_pad_mask = tgt_words.data.eq(pad_idx).unsqueeze(1) # [B, 1, T_tgt]
with_align = kwargs.pop('with_align', False)
attn_aligns = []
for i, layer in enumerate(self.transformer_layers):
layer_cache = self.state["cache"]["layer_{}".format(i)] \
if step is not None else None
output, attn, attn_align = layer(
output,
src_memory_bank,
src_pad_mask,
tgt_pad_mask,
layer_cache=layer_cache,
step=step,
with_align=with_align)
if attn_align is not None:
attn_aligns.append(attn_align)
output = self.layer_norm(output)
dec_outs = output.transpose(0, 1).contiguous()
attn = attn.transpose(0, 1).contiguous()
attns = {"std": attn}
if self._copy:
attns["copy"] = attn
if with_align:
attns["align"] = attn_aligns[self.alignment_layer] # `(B, Q, K)`
# attns["align"] = torch.stack(attn_aligns, 0).mean(0) # All avg
# TODO change the way attns is returned dict => list or tuple (onnx)
return dec_outs, attns
def _init_cache(self, memory_bank):
self.state["cache"] = {}
batch_size = memory_bank.size(1)
depth = memory_bank.size(-1)
for i, layer in enumerate(self.transformer_layers):
layer_cache = {"memory_keys": None, "memory_values": None}
if isinstance(layer.self_attn, AverageAttention):
layer_cache["prev_g"] = torch.zeros((batch_size, 1, depth),
device=memory_bank.device)
else:
layer_cache["self_keys"] = None
layer_cache["self_values"] = None
self.state["cache"]["layer_{}".format(i)] = layer_cache
def update_dropout(self, dropout, attention_dropout):
self.embeddings.update_dropout(dropout)
for layer in self.transformer_layers:
layer.update_dropout(dropout, attention_dropout)
|