Spaces:
Runtime error
Runtime error
File size: 8,123 Bytes
c021d8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
""" Multi-Head Attention module """
import math
import torch
import torch.nn as nn
from .misc import generate_relative_positions_matrix,\
relative_matmul
# from onmt.utils.misc import aeq
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention module from "Attention is All You Need"
:cite:`DBLP:journals/corr/VaswaniSPUJGKP17`.
Similar to standard `dot` attention but uses
multiple attention distributions simulataneously
to select relevant items.
.. mermaid::
graph BT
A[key]
B[value]
C[query]
O[output]
subgraph Attn
D[Attn 1]
E[Attn 2]
F[Attn N]
end
A --> D
C --> D
A --> E
C --> E
A --> F
C --> F
D --> O
E --> O
F --> O
B --> O
Also includes several additional tricks.
Args:
head_count (int): number of parallel heads
model_dim (int): the dimension of keys/values/queries,
must be divisible by head_count
dropout (float): dropout parameter
"""
def __init__(self, head_count, model_dim, dropout=0.1,
max_relative_positions=0):
assert model_dim % head_count == 0
self.dim_per_head = model_dim // head_count
self.model_dim = model_dim
super(MultiHeadedAttention, self).__init__()
self.head_count = head_count
self.linear_keys = nn.Linear(model_dim,
head_count * self.dim_per_head)
self.linear_values = nn.Linear(model_dim,
head_count * self.dim_per_head)
self.linear_query = nn.Linear(model_dim,
head_count * self.dim_per_head)
self.softmax = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.final_linear = nn.Linear(model_dim, model_dim)
self.max_relative_positions = max_relative_positions
if max_relative_positions > 0:
vocab_size = max_relative_positions * 2 + 1
self.relative_positions_embeddings = nn.Embedding(
vocab_size, self.dim_per_head)
def forward(self, key, value, query, mask=None,
layer_cache=None, attn_type=None):
"""
Compute the context vector and the attention vectors.
Args:
key (FloatTensor): set of `key_len`
key vectors ``(batch, key_len, dim)``
value (FloatTensor): set of `key_len`
value vectors ``(batch, key_len, dim)``
query (FloatTensor): set of `query_len`
query vectors ``(batch, query_len, dim)``
mask: binary mask 1/0 indicating which keys have
zero / non-zero attention ``(batch, query_len, key_len)``
Returns:
(FloatTensor, FloatTensor):
* output context vectors ``(batch, query_len, dim)``
* Attention vector in heads ``(batch, head, query_len, key_len)``.
"""
# CHECKS
# batch, k_len, d = key.size()
# batch_, k_len_, d_ = value.size()
# aeq(batch, batch_)
# aeq(k_len, k_len_)
# aeq(d, d_)
# batch_, q_len, d_ = query.size()
# aeq(batch, batch_)
# aeq(d, d_)
# aeq(self.model_dim % 8, 0)
# if mask is not None:
# batch_, q_len_, k_len_ = mask.size()
# aeq(batch_, batch)
# aeq(k_len_, k_len)
# aeq(q_len_ == q_len)
# END CHECKS
batch_size = key.size(0)
dim_per_head = self.dim_per_head
head_count = self.head_count
key_len = key.size(1)
query_len = query.size(1)
def shape(x):
"""Projection."""
return x.view(batch_size, -1, head_count, dim_per_head) \
.transpose(1, 2)
def unshape(x):
"""Compute context."""
return x.transpose(1, 2).contiguous() \
.view(batch_size, -1, head_count * dim_per_head)
# 1) Project key, value, and query.
if layer_cache is not None:
if attn_type == "self":
query, key, value = self.linear_query(query),\
self.linear_keys(query),\
self.linear_values(query)
key = shape(key)
value = shape(value)
if layer_cache["self_keys"] is not None:
key = torch.cat(
(layer_cache["self_keys"], key),
dim=2)
if layer_cache["self_values"] is not None:
value = torch.cat(
(layer_cache["self_values"], value),
dim=2)
layer_cache["self_keys"] = key
layer_cache["self_values"] = value
elif attn_type == "context":
query = self.linear_query(query)
if layer_cache["memory_keys"] is None:
key, value = self.linear_keys(key),\
self.linear_values(value)
key = shape(key)
value = shape(value)
else:
key, value = layer_cache["memory_keys"],\
layer_cache["memory_values"]
layer_cache["memory_keys"] = key
layer_cache["memory_values"] = value
else:
key = self.linear_keys(key)
value = self.linear_values(value)
query = self.linear_query(query)
key = shape(key)
value = shape(value)
if self.max_relative_positions > 0 and attn_type == "self":
key_len = key.size(2)
# 1 or key_len x key_len
relative_positions_matrix = generate_relative_positions_matrix(
key_len, self.max_relative_positions,
cache=True if layer_cache is not None else False)
# 1 or key_len x key_len x dim_per_head
relations_keys = self.relative_positions_embeddings(
relative_positions_matrix.to(key.device))
# 1 or key_len x key_len x dim_per_head
relations_values = self.relative_positions_embeddings(
relative_positions_matrix.to(key.device))
query = shape(query)
key_len = key.size(2)
query_len = query.size(2)
# 2) Calculate and scale scores.
query = query / math.sqrt(dim_per_head)
# batch x num_heads x query_len x key_len
query_key = torch.matmul(query, key.transpose(2, 3))
if self.max_relative_positions > 0 and attn_type == "self":
scores = query_key + relative_matmul(query, relations_keys, True)
else:
scores = query_key
scores = scores.float()
if mask is not None:
mask = mask.unsqueeze(1) # [B, 1, 1, T_values]
scores = scores.masked_fill(mask, -1e18)
# 3) Apply attention dropout and compute context vectors.
attn = self.softmax(scores).to(query.dtype)
drop_attn = self.dropout(attn)
context_original = torch.matmul(drop_attn, value)
if self.max_relative_positions > 0 and attn_type == "self":
context = unshape(context_original
+ relative_matmul(drop_attn,
relations_values,
False))
else:
context = unshape(context_original)
output = self.final_linear(context)
# CHECK
# batch_, q_len_, d_ = output.size()
# aeq(q_len, q_len_)
# aeq(batch, batch_)
# aeq(d, d_)
# Return multi-head attn
attns = attn \
.view(batch_size, head_count,
query_len, key_len)
return output, attns
def update_dropout(self, dropout):
self.dropout.p = dropout
|