File size: 5,550 Bytes
c021d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import time
import pickle
import datetime
import itertools
import numpy as np
import torch
import torch.nn.functional as F

from onmt_modules.misc import sequence_mask
from model_autopst import Generator_1 as Predictor



class Solver(object):

    def __init__(self, data_loader, config, hparams):
        """Initialize configurations."""

        
        self.data_loader = data_loader
        self.hparams = hparams
        self.gate_threshold = hparams.gate_threshold
        
        self.use_cuda = torch.cuda.is_available()
        self.device = torch.device('cuda:{}'.format(config.device_id) if self.use_cuda else 'cpu')
        self.num_iters = config.num_iters
        self.log_step = config.log_step
        
        # Build the model
        self.build_model()
    
            
    def build_model(self):
        
        self.P = Predictor(self.hparams)
        
        self.optimizer = torch.optim.Adam(self.P.parameters(), 0.0001, [0.9, 0.999])
        
        self.P.to(self.device)
        
        self.BCELoss = torch.nn.BCEWithLogitsLoss().to(self.device)    
    
                
    def train(self):
        # Set data loader
        data_loader = self.data_loader
        data_iter = iter(data_loader)
        
        
        # Print logs in specified order
        keys = ['P/loss_tx2sp', 'P/loss_stop_sp']
        
            
        # Start training.
        print('Start training...')
        start_time = time.time()
        for i in range(self.num_iters):

            try:
                sp_real, cep_real, cd_real, _, num_rep_sync, len_real, _, len_short_sync, spk_emb = next(data_iter)
            except:
                data_iter = iter(data_loader)
                sp_real, cep_real, cd_real, _, num_rep_sync, len_real, _, len_short_sync, spk_emb = next(data_iter)
                
            
            sp_real = sp_real.to(self.device)
            cep_real = cep_real.to(self.device)
            cd_real = cd_real.to(self.device)
            len_real = len_real.to(self.device)
            spk_emb = spk_emb.to(self.device)
            num_rep_sync = num_rep_sync.to(self.device)
            len_short_sync = len_short_sync.to(self.device)
            
            
            # real spect masks
            mask_sp_real = ~sequence_mask(len_real, sp_real.size(1))
            mask_long = (~mask_sp_real).float()
            
            len_real_mask = torch.min(len_real + 10, 
                                      torch.full_like(len_real, sp_real.size(1)))
            loss_tx2sp_mask = sequence_mask(len_real_mask, sp_real.size(1)).float().unsqueeze(-1)
            
            # text input masks
            codes_mask = sequence_mask(len_short_sync, num_rep_sync.size(1)).float()
            
            
            # =================================================================================== #
            #                                    2. Train                                         #
            # =================================================================================== #
            
            self.P = self.P.train()
            
            
            sp_real_sft = torch.zeros_like(sp_real)
            sp_real_sft[:, 1:, :] = sp_real[:, :-1, :]    
            
            
            spect_pred, stop_pred_sp = self.P(cep_real.transpose(2,1),
                                              mask_long,
                                              codes_mask,
                                              num_rep_sync,
                                              len_short_sync+1,
                                              sp_real_sft.transpose(1,0), 
                                              len_real+1,
                                              spk_emb)
                        
            
            loss_tx2sp = (F.mse_loss(spect_pred.permute(1,0,2), sp_real, reduction='none')
                          * loss_tx2sp_mask).sum() / loss_tx2sp_mask.sum()
                          
            loss_stop_sp = self.BCELoss(stop_pred_sp.squeeze(-1).t(), mask_sp_real.float())
            
            loss_total = loss_tx2sp + loss_stop_sp
            
            # Backward and optimize
            self.optimizer.zero_grad()
            loss_total.backward()
            self.optimizer.step()
            

            # Logging
            loss = {}
            loss['P/loss_tx2sp'] = loss_tx2sp.item()
            loss['P/loss_stop_sp'] = loss_stop_sp.item()
            

            # =================================================================================== #
            #                                 4. Miscellaneous                                    #
            # =================================================================================== #

            # Print out training information
            if (i+1) % self.log_step == 0:
                et = time.time() - start_time
                et = str(datetime.timedelta(seconds=et))[:-7]
                log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters)
                for tag in keys:
                    log += ", {}: {:.8f}".format(tag, loss[tag])
                print(log)
                
                
            # Save model checkpoints.
            if (i+1) % 10000 == 0:
                torch.save({'model': self.P.state_dict(),
                            'optimizer': self.optimizer.state_dict()}, f'./assets/{i+1}-A.ckpt')
                print('Saved model checkpoints into assets ...')