tts-rvc-autopst / hparams.py
jonathanjordan21's picture
Create hparams.py
23598cb verified
class Map(dict):
"""
Example:
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
Credits to epool:
https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary
"""
def __init__(self, *args, **kwargs):
super(Map, self).__init__(*args, **kwargs)
for arg in args:
if isinstance(arg, dict):
for k, v in arg.items():
self[k] = v
if kwargs:
for k, v in kwargs.iteritems():
self[k] = v
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(Map, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(Map, self).__delitem__(key)
del self.__dict__[key]
# Default hyperparameters:
hparams = Map({
'name': "wavenet_vocoder",
# Convenient model builder
'builder': "wavenet",
# Input type:
# 1. raw [-1, 1]
# 2. mulaw [-1, 1]
# 3. mulaw-quantize [0, mu]
# If input_type is raw or mulaw, network assumes scalar input and
# discretized mixture of logistic distributions output, otherwise one-hot
# input and softmax output are assumed.
# **NOTE**: if you change the one of the two parameters below, you need to
# re-run preprocessing before training.
'input_type': "raw",
'quantize_channels': 65536, # 65536 or 256
# Audio:
'sample_rate': 16000,
# this is only valid for mulaw is True
'silence_threshold': 2,
'num_mels': 80,
'fmin': 125,
'fmax': 7600,
'fft_size': 1024,
# shift can be specified by either hop_size or frame_shift_ms
'hop_size': 256,
'frame_shift_ms': None,
'min_level_db': -100,
'ref_level_db': 20,
# whether to rescale waveform or not.
# Let x is an input waveform, rescaled waveform y is given by:
# y = x / np.abs(x).max() * rescaling_max
'rescaling': True,
'rescaling_max': 0.999,
# mel-spectrogram is normalized to [0, 1] for each utterance and clipping may
# happen depends on min_level_db and ref_level_db, causing clipping noise.
# If False, assertion is added to ensure no clipping happens.o0
'allow_clipping_in_normalization': True,
# Mixture of logistic distributions:
'log_scale_min': float(-32.23619130191664),
# Model:
# This should equal to `quantize_channels` if mu-law quantize enabled
# otherwise num_mixture * 3 (pi, mean, log_scale)
'out_channels': 10 * 3,
'layers': 24,
'stacks': 4,
'residual_channels': 512,
'gate_channels': 512, # split into 2 gropus internally for gated activation
'skip_out_channels': 256,
'dropout': 1 - 0.95,
'kernel_size': 3,
# If True, apply weight normalization as same as DeepVoice3
'weight_normalization': True,
# Use legacy code or not. Default is True since we already provided a model
# based on the legacy code that can generate high-quality audio.
# Ref: https://github.com/r9y9/wavenet_vocoder/pull/73
'legacy': True,
# Local conditioning (set negative value to disable))
'cin_channels': 80,
# If True, use transposed convolutions to upsample conditional features,
# otherwise repeat features to adjust time resolution
'upsample_conditional_features': True,
# should np.prod(upsample_scales) == hop_size
'upsample_scales': [4, 4, 4, 4],
# Freq axis kernel size for upsampling network
'freq_axis_kernel_size': 3,
# Global conditioning (set negative value to disable)
# currently limited for speaker embedding
# this should only be enabled for multi-speaker dataset
'gin_channels': -1, # i.e., speaker embedding dim
'n_speakers': -1,
# Data loader
'pin_memory': True,
'num_workers': 2,
# train/test
# test size can be specified as portion or num samples
'test_size': 0.0441, # 50 for CMU ARCTIC single speaker
'test_num_samples': None,
'random_state': 1234,
# Loss
# Training:
'batch_size': 2,
'adam_beta1': 0.9,
'adam_beta2': 0.999,
'adam_eps': 1e-8,
'amsgrad': False,
'initial_learning_rate': 1e-3,
# see lrschedule.py for available lr_schedule
'lr_schedule': "noam_learning_rate_decay",
'lr_schedule_kwargs': {}, # {"anneal_rate": 0.5, "anneal_interval": 50000},
'nepochs': 2000,
'weight_decay': 0.0,
'clip_thresh': -1,
# max time steps can either be specified as sec or steps
# if both are None, then full audio samples are used in a batch
'max_time_sec': None,
'max_time_steps': 8000,
# Hold moving averaged parameters and use them for evaluation
'exponential_moving_average': True,
# averaged = decay * averaged + (1 - decay) * x
'ema_decay': 0.9999,
# Save
# per-step intervals
'checkpoint_interval': 10000,
'train_eval_interval': 10000,
# per-epoch interval
'test_eval_epoch_interval': 5,
'save_optimizer_state': True,
# Eval:
})
def hparams_debug_string():
values = hparams.values()
hp = [' %s: %s' % (name, values[name]) for name in sorted(values)]
return 'Hyperparameters:\n' + '\n'.join(hp)