tts-rvc-autopst / data_loader.py
jonathanjordan21's picture
67809715652a92b22870c50ad30f6ff38e292006aedc75ddbdc828aa856ef68f
c021d8e verified
raw
history blame
8.29 kB
import os
import pickle
import torch
import numpy as np
from numpy.random import uniform
from torch.utils import data
from torch.utils.data.sampler import Sampler
from multiprocessing import Process, Manager
class Utterances(data.Dataset):
"""Dataset class for the Utterances dataset."""
def __init__(self, hparams):
"""Initialize and preprocess the Utterances dataset."""
self.meta_file = hparams.meta_file
self.feat_dir_1 = hparams.feat_dir_1
self.feat_dir_2 = hparams.feat_dir_2
self.feat_dir_3 = hparams.feat_dir_3
self.step = 4
self.split = 0
self.max_len_pad = hparams.max_len_pad
meta = pickle.load(open(self.meta_file, "rb"))
manager = Manager()
meta = manager.list(meta)
dataset = manager.list(len(meta)*[None]) # <-- can be shared between processes.
processes = []
for i in range(0, len(meta), self.step):
p = Process(target=self.load_data,
args=(meta[i:i+self.step],dataset,i))
p.start()
processes.append(p)
for p in processes:
p.join()
# very importtant to do dataset = list(dataset)
self.train_dataset = list(dataset)
self.num_tokens = len(self.train_dataset)
print('Finished loading the {} Utterances training dataset...'.format(self.num_tokens))
def load_data(self, submeta, dataset, idx_offset):
for k, sbmt in enumerate(submeta):
uttrs = len(sbmt)*[None]
for j, tmp in enumerate(sbmt):
if j < 2:
# fill in speaker name and embedding
uttrs[j] = tmp
else:
# fill in data
sp_tmp = np.load(os.path.join(self.feat_dir_1, tmp))
cep_tmp = np.load(os.path.join(self.feat_dir_2, tmp))[:, 0:14]
cd_tmp = np.load(os.path.join(self.feat_dir_3, tmp))
assert len(sp_tmp) == len(cep_tmp) == len(cd_tmp)
uttrs[j] = ( np.clip(sp_tmp, 0, 1), cep_tmp, cd_tmp )
dataset[idx_offset+k] = uttrs
def segment_np(self, cd_long, tau=2):
cd_norm = np.sqrt((cd_long ** 2).sum(axis=-1, keepdims=True))
G = (cd_long @ cd_long.T) / (cd_norm @ cd_norm.T)
L = G.shape[0]
num_rep = []
num_rep_sync = []
prev_boundary = 0
rate = np.random.uniform(0.8, 1.3)
for t in range(1, L+1):
if t==L:
num_rep.append(t - prev_boundary)
num_rep_sync.append(t - prev_boundary)
prev_boundary = t
if t < L:
q = np.random.uniform(rate-0.1, rate)
tmp = G[prev_boundary, max(prev_boundary-20, 0):min(prev_boundary+20, L)]
if q <= 1:
epsilon = np.quantile(tmp, q)
if np.all(G[prev_boundary, t:min(t+tau, L)] < epsilon):
num_rep.append(t - prev_boundary)
num_rep_sync.append(t - prev_boundary)
prev_boundary = t
else:
epsilon = np.quantile(tmp, 2-q)
if np.all(G[prev_boundary, t:min(t+tau, L)] < epsilon):
num_rep.append(t - prev_boundary)
else:
num_rep.extend([t-prev_boundary-0.5, 0.5])
num_rep_sync.append(t - prev_boundary)
prev_boundary = t
num_rep = np.array(num_rep)
num_rep_sync = np.array(num_rep_sync)
return num_rep, num_rep_sync
def __getitem__(self, index):
"""Return M uttrs for one spkr."""
dataset = self.train_dataset
list_uttrs = dataset[index]
emb_org = list_uttrs[1]
uttr = np.random.randint(2, len(list_uttrs))
melsp, melcep, cd_real = list_uttrs[uttr]
num_rep, num_rep_sync = self.segment_np(cd_real)
return melsp, melcep, cd_real, num_rep, num_rep_sync, len(melsp), len(num_rep), len(num_rep_sync), emb_org
def __len__(self):
"""Return the number of spkrs."""
return self.num_tokens
class MyCollator(object):
def __init__(self, hparams):
self.max_len_pad = hparams.max_len_pad
def __call__(self, batch):
new_batch = []
l_short_max = 0
l_short_sync_max = 0
l_real_max = 0
for token in batch:
sp_real, cep_real, cd_real, rep, rep_sync, l_real, l_short, l_short_sync, emb = token
if l_short > l_short_max:
l_short_max = l_short
if l_short_sync > l_short_sync_max:
l_short_sync_max = l_short_sync
if l_real > l_real_max:
l_real_max = l_real
sp_real_pad = np.pad(sp_real, ((0,self.max_len_pad-l_real),(0,0)), 'constant')
cep_real_pad = np.pad(cep_real, ((0,self.max_len_pad-l_real),(0,0)), 'constant')
cd_real_pad = np.pad(cd_real, ((0,self.max_len_pad-l_real),(0,0)), 'constant')
rep_pad = np.pad(rep, (0,self.max_len_pad-l_short), 'constant')
rep_sync_pad = np.pad(rep_sync, (0,self.max_len_pad-l_short_sync), 'constant')
new_batch.append( (sp_real_pad, cep_real_pad, cd_real_pad, rep_pad, rep_sync_pad, l_real, l_short, l_short_sync, emb) )
batch = new_batch
a, b, c, d, e, f, g, h, i = zip(*batch)
sp_real = torch.from_numpy(np.stack(a, axis=0))[:,:l_real_max+1,:]
cep_real = torch.from_numpy(np.stack(b, axis=0))[:,:l_real_max+1,:]
cd_real = torch.from_numpy(np.stack(c, axis=0))[:,:l_real_max+1,:]
num_rep = torch.from_numpy(np.stack(d, axis=0))[:,:l_short_max+1]
num_rep_sync = torch.from_numpy(np.stack(e, axis=0))[:,:l_short_sync_max+1]
len_real = torch.from_numpy(np.stack(f, axis=0))
len_short = torch.from_numpy(np.stack(g, axis=0))
len_short_sync = torch.from_numpy(np.stack(h, axis=0))
spk_emb = torch.from_numpy(np.stack(i, axis=0))
return sp_real, cep_real, cd_real, num_rep, num_rep_sync, len_real, len_short, len_short_sync, spk_emb
class MultiSampler(Sampler):
"""Samples elements more than once in a single pass through the data.
"""
def __init__(self, num_samples, n_repeats, shuffle=False):
self.num_samples = num_samples
self.n_repeats = n_repeats
self.shuffle = shuffle
def gen_sample_array(self):
self.sample_idx_array = torch.arange(self.num_samples, dtype=torch.int64).repeat(self.n_repeats)
if self.shuffle:
self.sample_idx_array = self.sample_idx_array[torch.randperm(len(self.sample_idx_array))]
return self.sample_idx_array
def __iter__(self):
return iter(self.gen_sample_array())
def __len__(self):
return len(self.sample_idx_array)
def worker_init_fn(x):
return np.random.seed((torch.initial_seed()) % (2**32))
def get_loader(hparams):
"""Build and return a data loader."""
dataset = Utterances(hparams)
my_collator = MyCollator(hparams)
sampler = MultiSampler(len(dataset), hparams.samplier, shuffle=hparams.shuffle)
data_loader = data.DataLoader(dataset=dataset,
batch_size=hparams.batch_size,
sampler=sampler,
num_workers=hparams.num_workers,
drop_last=True,
pin_memory=False,
worker_init_fn=worker_init_fn,
collate_fn=my_collator)
return data_loader