File size: 11,013 Bytes
b82e8b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
const monitor = [];
function eachMonitor(p, f) {
monitor.forEach((m) => {
if (m[0] === p[0] && m[1] === p[1]) {
f(m);
}
});
}
function isMonitored(p) {
let result = false;
eachMonitor(p, (m) => {
result = true;
});
return result;
}
// 2D projection
function worldToLocal(pointA, pointB, pointC) {
const vectorAB = [pointB[0] - pointA[0], pointB[1] - pointA[1]];
const vectorAC = [pointC[0] - pointA[0], pointC[1] - pointA[1]];
const dot1 = dot2D(vectorAB, vectorAC);
const dot2 = dot2D(vectorAB, vectorAB);
const localX = dot1 / dot2;
const pointD = [pointA[0] + localX * vectorAB[0], pointA[1] + localX * vectorAB[1]];
// localY = distance from pointC to pointD
const vectorCD = [pointD[0] - pointC[0], pointD[1] - pointC[1]];
let localY = Math.sqrt(dot2D(vectorCD, vectorCD));
// if pointC is on the right side of vectorAB, localY is negative
const cross = cross2D(vectorAB, vectorAC);
if (0 < cross) {
localY = -localY;
}
return [localX, localY];
}
function distPointFromSeg(pointA, pointB, pointC, lx, ly) {
if (lx < 0) {
const vectorAC = [pointC[0] - pointA[0], pointC[1] - pointA[1]];
return Math.sqrt(dot2D(vectorAC, vectorAC));
}
if (1.0 < lx) {
const vectorBC = [pointC[0] - pointB[0], pointC[1] - pointB[1]];
return Math.sqrt(dot2D(vectorBC, vectorBC));
}
return Math.abs(ly);
}
function localToWorld([pointA, pointB], pointC) { // C is local coordinate
const vectorAB = [pointB[0] - pointA[0], pointB[1] - pointA[1]];
// pointD = pointA + C.x * vectorAB(垂線との交点)
const pointD = [pointA[0] + pointC[0] * vectorAB[0], pointA[1] + pointC[0] * vectorAB[1]];
const v = perpendicular2D(vectorAB);
const vLength = Math.sqrt(dot2D(v, v));
if (vLength < 0.0001) { return pointD; }
const newLength = pointC[1];
const factor = newLength / vLength;
return [pointD[0] + factor * v[0], pointD[1] + factor * v[1]];
}
function makeEdgeSegments(pose) {
return limbSeq.map((segment) => {
const p0 = pose[segment[0]];
const p1 = pose[segment[1]];
return [p0, p1];
});
}
function makeNormalizeEdgeSegments(edges) {
return edges.map((edge) => normalize2D([edge[1][0] - edge[0][0], edge[1][1] - edge[0][1]]));
}
const fieldDepth = 5;
const FO0i = 0;
const FO0t = 1;
const FO0u = 2;
const FO0d = 3;
// c current
// p prev
// n next
// 0 primary
// 1 secondary
// e edge
// s segment
// i in
// o out
// t time
// l local
// q point
// m main
// d distance
// w weight
function calcJointRange(
edgeSegments, normalizedEdgeSegments,
edgeSegmentsForSideDecision,
ep, ec, m) {
// parent, child
const np = normalizedEdgeSegments[ep];
const nc = normalizedEdgeSegments[ec];
let pnp = perpendicular2D(np);
let pnc = perpendicular2D(nc);
let side = getSide(edgeSegmentsForSideDecision[ep][0], edgeSegmentsForSideDecision[ep][1], edgeSegmentsForSideDecision[ec][1], m);
if (side < 0) {
pnp = reverse2D(pnp);
pnc = reverse2D(pnc);
}
return [pnp, pnc];
}
function calcJointRangeWithOrder(oldEdgeSegments, oldNormalizedEdgeSegments, newEdgeSegments, e0, m, order) {
if (order < 0) {
const e1 = findPrevEdgeIndex(e0);
if (e1 < 0) { return null; }
const [pn1, pn0] = calcJointRange(oldEdgeSegments, oldNormalizedEdgeSegments, newEdgeSegments,e1, e0, m);
const oldPivot = oldEdgeSegments[e0][0];
const newPivot = newEdgeSegments[e0][0];
return [pn0, pn1, oldPivot, newPivot, e1];
} else if (0 < order) {
const e1 = findNextEdgeIndex(e0);
if (e1 < 0) { return null; }
const [pn0, pn1] = calcJointRange(oldEdgeSegments, oldNormalizedEdgeSegments, newEdgeSegments, e0, e1, m);
const oldPivot = oldEdgeSegments[e0][1];
const newPivot = newEdgeSegments[e0][1];
return [pn0, pn1, oldPivot, newPivot, e1];
} else {
return null;
}
}
function buildWeightMap(size, pose) {
const threshold = 512;
const [w, h] = size;
// この状態で、canvasに対して、
// 同じ大きさの3次元配列[x,y,z]を作成する
// x,yは画像の2次元座標
// 各Pixelに対して、
// そのPixelに最も近いエッジのindexを[0]に、
// そのときのエッジ座標系におけるtを[1]に記録する
// どの骨格とも近くないものは[0]=255とする
const field = new Float32Array(w * h * fieldDepth)
function fieldIndex(x, y) {
return (y * w + x) * fieldDepth;
}
const edgeSegments = makeEdgeSegments(pose);
const normalizedEdgeSegments = makeNormalizeEdgeSegments(edgeSegments);
// 各Pixelに対して、一番近いエッジを探す
// またそのエッジ座標系におけるtを保存する
for (let y = 0 ; y < h ; y++) {
for (let x = 0 ; x < w ; x++) {
const m = [x, y];
let minDist = threshold;
const fidx = fieldIndex(x, y);
field[fidx+FO0i] = -1;
for (let i = 0 ; i < limbSeq.length ; i++) {
// 線分から点への距離を計算
const s = edgeSegments[i];
const lq = worldToLocal(s[0], s[1], m);
const dist = distPointFromSeg(s[0], s[1], m, lq[0], lq[1]);
if (dist < minDist) {
minDist = dist;
field[fidx+FO0i] = i;
field[fidx+FO0t] = lq[0];
field[fidx+FO0u] = lq[1];
field[fidx+FO0d] = dist;
}
}
}
}
return field;
}
function renderField(canvas2, size, field) {
function blend(c0, w0, c1, w1) {
const r = (c0[0] * w0 + c1[0] * w1);
const g = (c0[1] * w0 + c1[1] * w1);
const b = (c0[2] * w0 + c1[2] * w1);
const a = (c0[3] * w0 + c1[3] * w1);
return [r, g, b, a];
}
const [w, h] = size;
function fieldIndex(x, y) {
return (y * w + x) * fieldDepth;
}
canvas2.width = w;
canvas2.height = h;
const ctx2 = canvas2.getContext('2d');
bindings = ctx2.createImageData(w, h);
const data = bindings.data;
for (let y = 0 ; y < h ; y++) {
for (let x = 0 ; x < w ; x++) {
const fidx = fieldIndex(x, y);
const oi = (y * w + x) * 4;
let c = [0, 0, 0, 64];
const e0 = field[fidx+FO0i];
if (0 <= e0) {
c = colors[e0];
c[3] = 255;
// c[3] = 255 - field[fidx+FO0d] * 4;
}
data[oi + 0] = c[0];
data[oi + 1] = c[1];
data[oi + 2] = c[2];
data[oi + 3] = c[3];
}
}
ctx2.putImageData(bindings, 0, 0);
return field;
}
function makeImageDataFromPicture(canvas3, size, picture) {
const [w, h] = size;
canvas3.width = w;
canvas3.height = h;
const ctx3 = canvas3.getContext("2d");
// ctx3.drawImage(picture, sampleOffset[0], sampleOffset[1]);
ctx3.drawImage(picture, 0, 0);
return new ImageData(new Uint8ClampedArray(ctx3.getImageData(0, 0, w, h).data), w, h);
}
function animatePicture(canvas4, size, oldPose, newPose, srcImageData, initialPoseField) {
const srcData = srcImageData.data;
const [w, h] = size;
const ctx4 = canvas4.getContext("2d");
canvas4.width = w;
canvas4.height = h;
const dstCtx = ctx4;
const dstImageData = dstCtx.createImageData(w, h);
const dstData = dstImageData.data;
const field = buildWeightMap(size, newPose);
const canvas2 = document.getElementById("canvas2");
// renderField(canvas2, size, field);
drawBodyPoseTo(canvas2.getContext("2d"), [newPose]);
function fieldIndex(x, y) {
return (y * w + x) * fieldDepth;
}
const oldEdgeSegments = makeEdgeSegments(oldPose);
const oldNormalizedEdgeSegments = makeNormalizeEdgeSegments(oldEdgeSegments);
const newEdgeSegments = makeEdgeSegments(newPose);
function oldEdgePoint(edgeIndex, p) {
const v = oldEdgeSegments[edgeIndex];
return localToWorld(v, p);
}
function newEdgePoint(edgeIndex, p) {
const v = newEdgeSegments[edgeIndex];
return localToWorld(v, p);
}
debugLines = [];
for (let y = 0 ; y < h ; y++) {
for (let x = 0 ; x < w ; x++) {
// 各点に対して、fieldから近隣エッジ座標系でのローカル座標を取得する
const oi = (y * w + x) * 4;
const fidx = fieldIndex(x, y);
const e0 = field[fidx+FO0i];
if (e0 < 0) {
dstData[oi + 0] = 0;
dstData[oi + 1] = 0;
dstData[oi + 2] = 0;
dstData[oi + 3] = 255;
continue;
}
const lq = [field[fidx+FO0t], field[fidx+FO0u]];
let e1 = -1;
let order = 0; // 1 == forward, -1 == backward
if (lq[0] < 0.5) {
e1 = findPrevEdgeIndex(e0);
} else if (0.5 <= lq[0]) {
e1 = findNextEdgeIndex(e0);
}
if (0 <= e1) {
if (lq[0] < 0) {
order = -1;
} else if (1 < lq[0]) {
order = 1;
}
}
let iq = oldEdgePoint(e0, lq);
if (0 != order) {
// サイド判定は新ポーズで行う
const mNew = [x,y];
const jointRange = calcJointRangeWithOrder(
oldEdgeSegments, oldNormalizedEdgeSegments,
newEdgeSegments,
e0, mNew, order);
const [pn0, pn1, oldPivot, newPivot, _] = jointRange;
const pivotMNew = [x - newPivot[0], y - newPivot[1]];
const [w0, w1]= [angleBetween(pn0, pivotMNew), angleBetween(pivotMNew, pn1)];
let d0 = field[fidx+FO0d];
let mt = slerp2D(pn0, pn1, w0 / (w0 + w1));
iq = [oldPivot[0] + mt[0] * d0, oldPivot[1] + mt[1] * d0];
eachMonitor([x,y], () => {
console.log('animate', x, y, ix, iy, e1, w0, w1, pn0, pn1);
debugLines.push([oldPivot, pn0]);
debugLines.push([oldPivot, pn1]);
});
}
iq = [Math.round(iq[0]), Math.round(iq[1])];
var initialOwner = initialPoseField[fieldIndex(iq[0], iq[1]) + FO0i];
if (0 <= initialOwner && initialOwner != e0 && initialOwner != e1) {
// ほかの領土
dstData[oi + 0] = 0;
dstData[oi + 1] = 0;
dstData[oi + 2] = 0;
dstData[oi + 3] = 0;
} else {
// canvas3の[ix,iy]の色を取得して、canvas4の[x,y]に描画する
const si = (iq[1] * w + iq[0]) * 4;
dstData[oi + 0] = srcData[si + 0];
dstData[oi + 1] = srcData[si + 1];
dstData[oi + 2] = srcData[si + 2];
dstData[oi + 3] = srcData[si + 3];
}
}
}
dstCtx.putImageData(dstImageData, 0, 0);
}
function handleMicroscopeMouseMove(e) {
const [x,y] = mouseCursor;
const imageData = ctx.getImageData(x - 2, y - 2, 5, 5);
const data = imageData.data;
const microscope = document.getElementById('microscope');
const ctx2 = microscope.getContext('2d');
ctx2.clearRect(0, 0, microscope.width, microscope.height);
for (let i = 0 ; i < 5 ; i++) {
for (let j = 0 ; j < 5 ; j++) {
const idx = (i * 5 + j) * 4;
ctx2.fillStyle = `rgba(${data[idx]}, ${data[idx+1]}, ${data[idx+2]}, ${data[idx+3]})`;
ctx2.fillRect(j * 10, i * 10, 10, 10);
}
}
}
function initMicroscope() {
// canvas.addEventListener('mousemove', handleMicroscopeMouseMove);
// poseData[0][6] = [329, 148];
// poseData[0][7] = [329, 194];
}
|