File size: 10,121 Bytes
f2a4883 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
from PIL import Image, ImageFilter
from collections import defaultdict
from skimage import color as sk_color
from PIL import Image
from tqdm import tqdm
from skimage.color import deltaE_ciede2000, rgb2lab
import cv2
import numpy as np
def replace_color(image, color_1, color_2, alpha_np):
# 画像データを配列に変換
data = np.array(image)
# RGBAモードの画像であるため、形状変更時に4チャネルを考慮
original_shape = data.shape
data = data.reshape(-1, 4) # RGBAのため、4チャネルでフラット化
# color_1のマッチングを検索する際にはRGB値のみを比較
matches = np.all(data[:, :3] == color_1, axis=1)
# 変更を追跡するためのフラグ
nochange_count = 0
idx = 0
while np.any(matches):
idx += 1
new_matches = np.zeros_like(matches)
match_num = np.sum(matches)
for i in tqdm(range(len(data))):
if matches[i]:
x, y = divmod(i, original_shape[1])
neighbors = [
(x-1, y), (x+1, y), (x, y-1), (x, y+1) # 上下左右
]
replacement_found = False
for nx, ny in neighbors:
if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
ni = nx * original_shape[1] + ny
# RGBのみ比較し、アルファは無視
if not np.all(data[ni, :3] == color_1, axis=0) and not np.all(data[ni, :3] == color_2, axis=0):
data[i, :3] = data[ni, :3] # RGB値のみ更新
replacement_found = True
continue
if not replacement_found:
new_matches[i] = True
matches = new_matches
if match_num == np.sum(matches):
nochange_count += 1
if nochange_count > 5:
break
# 最終的な画像をPIL形式で返す
data = data.reshape(original_shape)
data[:, :, 3] = 255 - alpha_np
return Image.fromarray(data, 'RGBA')
def recolor_lineart_and_composite(lineart_image, base_image, new_color, alpha_th):
"""
Recolor an RGBA lineart image to a single new color while preserving alpha, and composite it over a base image.
Args:
lineart_image (PIL.Image): The lineart image with RGBA channels.
base_image (PIL.Image): The base image to composite onto.
new_color (tuple): The new RGB color for the lineart (e.g., (255, 0, 0) for red).
Returns:
PIL.Image: The composited image with the recolored lineart on top.
"""
# Ensure images are in RGBA mode
if lineart_image.mode != 'RGBA':
lineart_image = lineart_image.convert('RGBA')
if base_image.mode != 'RGBA':
base_image = base_image.convert('RGBA')
# Extract the alpha channel from the lineart image
r, g, b, alpha = lineart_image.split()
alpha_np = np.array(alpha)
alpha_np[alpha_np < alpha_th] = 0
alpha_np[alpha_np >= alpha_th] = 255
new_alpha = Image.fromarray(alpha_np)
# Create a new image using the new color and the alpha channel from the original lineart
new_lineart_image = Image.merge('RGBA', (
Image.new('L', lineart_image.size, int(new_color[0])),
Image.new('L', lineart_image.size, int(new_color[1])),
Image.new('L', lineart_image.size, int(new_color[2])),
new_alpha
))
# Composite the new lineart image over the base image
composite_image = Image.alpha_composite(base_image, new_lineart_image)
return composite_image, alpha_np
def thicken_and_recolor_lines(base_image, lineart, thickness=3, new_color=(0, 0, 0)):
"""
Thicken the lines of a lineart image, recolor them, and composite onto another image,
while preserving the transparency of the original lineart.
Args:
base_image (PIL.Image): The base image to composite onto.
lineart (PIL.Image): The lineart image with transparent background.
thickness (int): The desired thickness of the lines.
new_color (tuple): The new color to apply to the lines (R, G, B).
Returns:
PIL.Image: The image with the recolored and thickened lineart composited on top.
"""
# Ensure both images are in RGBA format
if base_image.mode != 'RGBA':
base_image = base_image.convert('RGBA')
if lineart.mode != 'RGB':
lineart = lineart.convert('RGBA')
# Convert the lineart image to OpenCV format
lineart_cv = np.array(lineart)
white_pixels = np.sum(lineart_cv == 255)
black_pixels = np.sum(lineart_cv == 0)
lineart_gray = cv2.cvtColor(lineart_cv, cv2.COLOR_RGBA2GRAY)
if white_pixels > black_pixels:
lineart_gray = cv2.bitwise_not(lineart_gray)
# Thicken the lines using OpenCV
kernel = np.ones((thickness, thickness), np.uint8)
lineart_thickened = cv2.dilate(lineart_gray, kernel, iterations=1)
lineart_thickened = cv2.bitwise_not(lineart_thickened)
# Create a new RGBA image for the recolored lineart
lineart_recolored = np.zeros_like(lineart_cv)
lineart_recolored[:, :, :3] = new_color # Set new RGB color
lineart_recolored[:, :, 3] = np.where(lineart_thickened < 250, 255, 0) # Blend alpha with thickened lines
# Convert back to PIL Image
lineart_recolored_pil = Image.fromarray(lineart_recolored, 'RGBA')
# Composite the thickened and recolored lineart onto the base image
combined_image = Image.alpha_composite(base_image, lineart_recolored_pil)
return combined_image
def generate_distant_colors(consolidated_colors, distance_threshold):
"""
Generate new RGB colors that are at least 'distance_threshold' CIEDE2000 units away from given colors.
Args:
consolidated_colors (list of tuples): List of ((R, G, B), count) tuples.
distance_threshold (float): The minimum CIEDE2000 distance from the given colors.
Returns:
list of tuples: List of new RGB colors that meet the distance requirement.
"""
#new_colors = []
# Convert the consolidated colors to LAB
consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
# Try to find a distant color
max_attempts = 10000
for _ in range(max_attempts):
# Generate a random color in RGB and convert to LAB
random_rgb = np.random.randint(0, 256, size=3)
random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
for base_color_lab in consolidated_lab:
# Calculate the CIEDE2000 distance
distance = deltaE_ciede2000(base_color_lab, random_lab)
if distance <= distance_threshold:
break
new_color = tuple(random_rgb)
break
return new_color
def consolidate_colors(major_colors, threshold):
"""
Consolidate similar colors in the major_colors list based on the CIEDE2000 metric.
Args:
major_colors (list of tuples): List of ((R, G, B), count) tuples.
threshold (float): Threshold for CIEDE2000 color difference.
Returns:
list of tuples: Consolidated list of ((R, G, B), count) tuples.
"""
# Convert RGB to LAB
colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
n = len(colors_lab)
# Find similar colors and consolidate
i = 0
while i < n:
j = i + 1
while j < n:
delta_e = deltaE_ciede2000(colors_lab[i], colors_lab[j])
if delta_e < threshold:
# Compare counts and consolidate to the color with the higher count
if major_colors[i][1] >= major_colors[j][1]:
major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
major_colors.pop(j)
colors_lab.pop(j)
else:
major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
major_colors.pop(i)
colors_lab.pop(i)
n -= 1
continue
j += 1
i += 1
return major_colors
def get_major_colors(image, threshold_percentage=0.01):
"""
Analyze an image to find the major RGB values based on a threshold percentage.
Args:
image (PIL.Image): The image to analyze.
threshold_percentage (float): The percentage threshold to consider a color as major.
Returns:
list of tuples: A list of (color, count) tuples for colors that are more frequent than the threshold.
"""
# Convert image to RGB if it's not
if image.mode != 'RGB':
image = image.convert('RGB')
# Count each color
color_count = defaultdict(int)
for pixel in image.getdata():
color_count[pixel] += 1
# Total number of pixels
total_pixels = image.width * image.height
# Filter colors to find those above the threshold
major_colors = [(color, count) for color, count in color_count.items()
if (count / total_pixels) >= threshold_percentage]
return major_colors
def process(image, lineart, alpha_th):
org = image
major_colors = get_major_colors(image, threshold_percentage=0.05)
major_colors = consolidate_colors(major_colors, 10)
new_color_1 = generate_distant_colors(major_colors, 100)
image = thicken_and_recolor_lines(org, lineart, thickness=5, new_color=new_color_1)
major_colors.append((new_color_1, 0))
new_color_2 = generate_distant_colors(major_colors, 100)
image, alpha_np = recolor_lineart_and_composite(lineart, image, new_color_2, alpha_th)
image = replace_color(image, new_color_1, new_color_2, alpha_np)
return image |