starline / starline.py
jonigata's picture
merge origin
f2a4883
raw
history blame
10.1 kB
from PIL import Image, ImageFilter
from collections import defaultdict
from skimage import color as sk_color
from PIL import Image
from tqdm import tqdm
from skimage.color import deltaE_ciede2000, rgb2lab
import cv2
import numpy as np
def replace_color(image, color_1, color_2, alpha_np):
# 画像データを配列に変換
data = np.array(image)
# RGBAモードの画像であるため、形状変更時に4チャネルを考慮
original_shape = data.shape
data = data.reshape(-1, 4) # RGBAのため、4チャネルでフラット化
# color_1のマッチングを検索する際にはRGB値のみを比較
matches = np.all(data[:, :3] == color_1, axis=1)
# 変更を追跡するためのフラグ
nochange_count = 0
idx = 0
while np.any(matches):
idx += 1
new_matches = np.zeros_like(matches)
match_num = np.sum(matches)
for i in tqdm(range(len(data))):
if matches[i]:
x, y = divmod(i, original_shape[1])
neighbors = [
(x-1, y), (x+1, y), (x, y-1), (x, y+1) # 上下左右
]
replacement_found = False
for nx, ny in neighbors:
if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
ni = nx * original_shape[1] + ny
# RGBのみ比較し、アルファは無視
if not np.all(data[ni, :3] == color_1, axis=0) and not np.all(data[ni, :3] == color_2, axis=0):
data[i, :3] = data[ni, :3] # RGB値のみ更新
replacement_found = True
continue
if not replacement_found:
new_matches[i] = True
matches = new_matches
if match_num == np.sum(matches):
nochange_count += 1
if nochange_count > 5:
break
# 最終的な画像をPIL形式で返す
data = data.reshape(original_shape)
data[:, :, 3] = 255 - alpha_np
return Image.fromarray(data, 'RGBA')
def recolor_lineart_and_composite(lineart_image, base_image, new_color, alpha_th):
"""
Recolor an RGBA lineart image to a single new color while preserving alpha, and composite it over a base image.
Args:
lineart_image (PIL.Image): The lineart image with RGBA channels.
base_image (PIL.Image): The base image to composite onto.
new_color (tuple): The new RGB color for the lineart (e.g., (255, 0, 0) for red).
Returns:
PIL.Image: The composited image with the recolored lineart on top.
"""
# Ensure images are in RGBA mode
if lineart_image.mode != 'RGBA':
lineart_image = lineart_image.convert('RGBA')
if base_image.mode != 'RGBA':
base_image = base_image.convert('RGBA')
# Extract the alpha channel from the lineart image
r, g, b, alpha = lineart_image.split()
alpha_np = np.array(alpha)
alpha_np[alpha_np < alpha_th] = 0
alpha_np[alpha_np >= alpha_th] = 255
new_alpha = Image.fromarray(alpha_np)
# Create a new image using the new color and the alpha channel from the original lineart
new_lineart_image = Image.merge('RGBA', (
Image.new('L', lineart_image.size, int(new_color[0])),
Image.new('L', lineart_image.size, int(new_color[1])),
Image.new('L', lineart_image.size, int(new_color[2])),
new_alpha
))
# Composite the new lineart image over the base image
composite_image = Image.alpha_composite(base_image, new_lineart_image)
return composite_image, alpha_np
def thicken_and_recolor_lines(base_image, lineart, thickness=3, new_color=(0, 0, 0)):
"""
Thicken the lines of a lineart image, recolor them, and composite onto another image,
while preserving the transparency of the original lineart.
Args:
base_image (PIL.Image): The base image to composite onto.
lineart (PIL.Image): The lineart image with transparent background.
thickness (int): The desired thickness of the lines.
new_color (tuple): The new color to apply to the lines (R, G, B).
Returns:
PIL.Image: The image with the recolored and thickened lineart composited on top.
"""
# Ensure both images are in RGBA format
if base_image.mode != 'RGBA':
base_image = base_image.convert('RGBA')
if lineart.mode != 'RGB':
lineart = lineart.convert('RGBA')
# Convert the lineart image to OpenCV format
lineart_cv = np.array(lineart)
white_pixels = np.sum(lineart_cv == 255)
black_pixels = np.sum(lineart_cv == 0)
lineart_gray = cv2.cvtColor(lineart_cv, cv2.COLOR_RGBA2GRAY)
if white_pixels > black_pixels:
lineart_gray = cv2.bitwise_not(lineart_gray)
# Thicken the lines using OpenCV
kernel = np.ones((thickness, thickness), np.uint8)
lineart_thickened = cv2.dilate(lineart_gray, kernel, iterations=1)
lineart_thickened = cv2.bitwise_not(lineart_thickened)
# Create a new RGBA image for the recolored lineart
lineart_recolored = np.zeros_like(lineart_cv)
lineart_recolored[:, :, :3] = new_color # Set new RGB color
lineart_recolored[:, :, 3] = np.where(lineart_thickened < 250, 255, 0) # Blend alpha with thickened lines
# Convert back to PIL Image
lineart_recolored_pil = Image.fromarray(lineart_recolored, 'RGBA')
# Composite the thickened and recolored lineart onto the base image
combined_image = Image.alpha_composite(base_image, lineart_recolored_pil)
return combined_image
def generate_distant_colors(consolidated_colors, distance_threshold):
"""
Generate new RGB colors that are at least 'distance_threshold' CIEDE2000 units away from given colors.
Args:
consolidated_colors (list of tuples): List of ((R, G, B), count) tuples.
distance_threshold (float): The minimum CIEDE2000 distance from the given colors.
Returns:
list of tuples: List of new RGB colors that meet the distance requirement.
"""
#new_colors = []
# Convert the consolidated colors to LAB
consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
# Try to find a distant color
max_attempts = 10000
for _ in range(max_attempts):
# Generate a random color in RGB and convert to LAB
random_rgb = np.random.randint(0, 256, size=3)
random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
for base_color_lab in consolidated_lab:
# Calculate the CIEDE2000 distance
distance = deltaE_ciede2000(base_color_lab, random_lab)
if distance <= distance_threshold:
break
new_color = tuple(random_rgb)
break
return new_color
def consolidate_colors(major_colors, threshold):
"""
Consolidate similar colors in the major_colors list based on the CIEDE2000 metric.
Args:
major_colors (list of tuples): List of ((R, G, B), count) tuples.
threshold (float): Threshold for CIEDE2000 color difference.
Returns:
list of tuples: Consolidated list of ((R, G, B), count) tuples.
"""
# Convert RGB to LAB
colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
n = len(colors_lab)
# Find similar colors and consolidate
i = 0
while i < n:
j = i + 1
while j < n:
delta_e = deltaE_ciede2000(colors_lab[i], colors_lab[j])
if delta_e < threshold:
# Compare counts and consolidate to the color with the higher count
if major_colors[i][1] >= major_colors[j][1]:
major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
major_colors.pop(j)
colors_lab.pop(j)
else:
major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
major_colors.pop(i)
colors_lab.pop(i)
n -= 1
continue
j += 1
i += 1
return major_colors
def get_major_colors(image, threshold_percentage=0.01):
"""
Analyze an image to find the major RGB values based on a threshold percentage.
Args:
image (PIL.Image): The image to analyze.
threshold_percentage (float): The percentage threshold to consider a color as major.
Returns:
list of tuples: A list of (color, count) tuples for colors that are more frequent than the threshold.
"""
# Convert image to RGB if it's not
if image.mode != 'RGB':
image = image.convert('RGB')
# Count each color
color_count = defaultdict(int)
for pixel in image.getdata():
color_count[pixel] += 1
# Total number of pixels
total_pixels = image.width * image.height
# Filter colors to find those above the threshold
major_colors = [(color, count) for color, count in color_count.items()
if (count / total_pixels) >= threshold_percentage]
return major_colors
def process(image, lineart, alpha_th):
org = image
major_colors = get_major_colors(image, threshold_percentage=0.05)
major_colors = consolidate_colors(major_colors, 10)
new_color_1 = generate_distant_colors(major_colors, 100)
image = thicken_and_recolor_lines(org, lineart, thickness=5, new_color=new_color_1)
major_colors.append((new_color_1, 0))
new_color_2 = generate_distant_colors(major_colors, 100)
image, alpha_np = recolor_lineart_and_composite(lineart, image, new_color_2, alpha_th)
image = replace_color(image, new_color_1, new_color_2, alpha_np)
return image