Spaces:
Running
Running
import cv2 | |
import gradio as gr | |
import os | |
from PIL import Image | |
import numpy as np | |
import torch | |
from torch.autograd import Variable | |
from torchvision import transforms | |
import torch.nn.functional as F | |
import gdown | |
import matplotlib.pyplot as plt | |
import warnings | |
warnings.filterwarnings("ignore") | |
os.system("git clone https://github.com/xuebinqin/DIS") | |
os.system("mv DIS/IS-Net/* .") | |
# project imports | |
from data_loader_cache import normalize, im_reader, im_preprocess | |
from models import * | |
#Helpers | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Download official weights | |
if not os.path.exists("saved_models"): | |
os.mkdir("saved_models") | |
os.system("mv isnet.pth saved_models/") | |
class GOSNormalize(object): | |
''' | |
Normalize the Image using torch.transforms | |
''' | |
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): | |
self.mean = mean | |
self.std = std | |
def __call__(self,image): | |
image = normalize(image,self.mean,self.std) | |
return image | |
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) | |
def load_image(im_path, hypar): | |
im = im_reader(im_path) | |
im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
im = torch.divide(im,255.0) | |
shape = torch.from_numpy(np.array(im_shp)) | |
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape | |
def build_model(hypar,device): | |
net = hypar["model"]#GOSNETINC(3,1) | |
# convert to half precision | |
if(hypar["model_digit"]=="half"): | |
net.half() | |
for layer in net.modules(): | |
if isinstance(layer, nn.BatchNorm2d): | |
layer.float() | |
net.to(device) | |
if(hypar["restore_model"]!=""): | |
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) | |
net.to(device) | |
net.eval() | |
return net | |
def predict(net, inputs_val, shapes_val, hypar, device): | |
''' | |
Given an Image, predict the mask | |
''' | |
net.eval() | |
if(hypar["model_digit"]=="full"): | |
inputs_val = inputs_val.type(torch.FloatTensor) | |
else: | |
inputs_val = inputs_val.type(torch.HalfTensor) | |
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable | |
ds_val = net(inputs_val_v)[0] # list of 6 results | |
pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction | |
## recover the prediction spatial size to the orignal image size | |
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) | |
ma = torch.max(pred_val) | |
mi = torch.min(pred_val) | |
pred_val = (pred_val-mi)/(ma-mi) # max = 1 | |
if device == 'cuda': torch.cuda.empty_cache() | |
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need | |
# Set Parameters | |
hypar = {} # paramters for inferencing | |
hypar["model_path"] ="./saved_models" ## load trained weights from this path | |
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights | |
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision | |
## choose floating point accuracy -- | |
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number | |
hypar["seed"] = 0 | |
hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size | |
## data augmentation parameters --- | |
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images | |
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation | |
hypar["model"] = ISNetDIS() | |
# Build Model | |
net = build_model(hypar, device) | |
def inference(image): | |
image_path = image | |
image_tensor, orig_size = load_image(image_path, hypar) | |
mask = predict(net, image_tensor, orig_size, hypar, device) | |
pil_mask = Image.fromarray(mask).convert('L') | |
im_rgb = Image.open(image).convert("RGB") | |
im_rgba = im_rgb.copy() | |
im_rgba.putalpha(pil_mask) | |
return [im_rgba, pil_mask] | |
title = "Highly Accurate Dichotomous Image Segmentation" | |
description = "This is an unofficial demo for DIS, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.<br>GitHub: https://github.com/xuebinqin/DIS<br>Telegram bot: https://t.me/restoration_photo_bot<br>[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)" | |
article = "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' alt='visitor badge'></center></div>" | |
interface = gr.Interface( | |
fn=inference, | |
inputs=gr.Image(type='filepath'), | |
outputs=gr.Gallery(), | |
examples=[['robot.png'], ['ship.png']], | |
title=title, | |
description=description, | |
article=article, | |
allow_flagging='never', | |
cache_examples=False, | |
).queue().launch(show_api=True, show_error=True) | |