File size: 5,065 Bytes
3afc594
 
e0a78f5
 
 
 
 
 
 
 
3afc594
e0a78f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3afc594
 
 
e0a78f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3afc594
 
e0a78f5
 
3afc594
e0a78f5
3afc594
 
 
 
 
e0a78f5
 
 
 
 
3afc594
 
e0a78f5
 
 
3afc594
 
 
 
e0a78f5
 
 
 
 
 
 
 
3afc594
 
 
 
 
 
e0a78f5
 
3afc594
e0a78f5
3afc594
e0a78f5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# TODO: return all pages used to form answer

import torch
from transformers import BitsAndBytesConfig
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import SimpleDirectoryReader
from llama_index.core import VectorStoreIndex, SummaryIndex
from llama_index.core.prompts import PromptTemplate
from llama_index.core import Settings
from PIL import Image

import gradio as gr


def messages_to_prompt(messages):
    prompt = ""
    for message in messages:
        if message.role == "system":
            m = "You are an expert in the research field of document understanding, bayesian deep learning and neural networks."
            prompt += f"<|system|>\n{m}</s>\n"
        elif message.role == "user":
            prompt += f"<|user|>\n{message.content}</s>\n"
        elif message.role == "assistant":
            prompt += f"<|assistant|>\n{message.content}</s>\n"

    # ensure we start with a system prompt, insert blank if needed
    if not prompt.startswith("<|system|>\n"):
        prompt = "<|system|>\n</s>\n" + prompt

    # add final assistant prompt
    prompt = prompt + "<|assistant|>\n"

    return prompt


def load_RAG_pipeline():
    # LLM
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.float16,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_use_double_quant=True,
    )

    llm = HuggingFaceLLM(
        model_name="HuggingFaceH4/zephyr-7b-alpha",
        tokenizer_name="HuggingFaceH4/zephyr-7b-alpha",
        query_wrapper_prompt=PromptTemplate("<|system|>\n</s>\n<|user|>\n{query_str}</s>\n<|assistant|>\n"),
        context_window=3900,
        max_new_tokens=256,
        model_kwargs={"quantization_config": quantization_config},
        # tokenizer_kwargs={},
        generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95},
        messages_to_prompt=messages_to_prompt,
        device_map="auto",
    )

    # Llama-index
    Settings.llm = llm
    Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
    # Settings.chunk_size = 512
    # Settings.chunk_overlap = 50

    # raw data
    documents = SimpleDirectoryReader("assets/txts").load_data()
    vector_index = VectorStoreIndex.from_documents(documents)
    # vector_index.persist(persist_dir="vectors")
    # https://docs.llamaindex.ai/en/v0.10.17/understanding/storing/storing.html

    # summary_index = SummaryIndex.from_documents(documents)
    query_engine = vector_index.as_query_engine(response_mode="compact", similarity_top_k=3)
    return query_engine


query_engine = load_RAG_pipeline()


# These are placeholder functions to simulate the behavior of the RAG setup.
# You would need to implement these with the actual logic to retrieve and generate answers based on the document.
def get_answer(question, temperature, nucleus_sampling, max_tokens):
    # Here you should implement the logic to generate an answer based on the question and the document.
    # For example, you could use a machine learning model for RAG.
    # answer = "This is a placeholder answer."
    # https://docs.llamaindex.ai/en/stable/module_guides/supporting_modules/settings/#setting-local-configurations
    response = query_engine.query(question)
    return response


def get_answer_page(response):
    # Implement logic to retrieve the page number or an image of the page with the answer.
    # best image
    best_match = response.source_nodes[0].metadata["file_path"]
    answer_page = float(int(best_match[-8:-4]))
    image = Image.open(best_match.replace("txt", "png"))
    return image, answer_page


# Create the gr.Interface function
def ask_my_thesis(question, temperature, nucleus_sampling, max_tokens):
    answer = get_answer(question, temperature, nucleus_sampling, max_tokens)
    image, answer_page = get_answer_page(answer)
    return answer, image, answer_page


# Set up the interface options based on the design in the image.
output_image = gr.Image(label="Answer Page")

# examples

iface = gr.Interface(
    fn=ask_my_thesis,
    inputs=[
        gr.Textbox(label="Question", placeholder="Type your question here..."),
        gr.Slider(0, 1, value=0.7, label="Temperature"),
        gr.Slider(0, 1, value=0.9, label="Nucleus Sampling"),
        gr.Slider(1, 500, value=100, label="Max Generated Number of Tokens"),
    ],
    outputs=[gr.Textbox(label="Answer"), output_image, gr.Label()],
    title="Ask my thesis: Intelligent Automation for AI-Driven Document Understanding",
    description=r"""Chat with the thesis manuscript: ask questions and receive answers with multimodal references (WIP).
    
    Spoiler: RAG application with LLM and embedding vector store can be quite slow on a 290 page document ;D
    """,
    allow_flagging="never",
)
# https://github.com/gradio-app/gradio/issues/4309

# https://discuss.huggingface.co/t/add-background-image/16381/4 background image
# Start the application.
if __name__ == "__main__":
    iface.launch()