ask_my_thesis / assets /txts /pg_0017.txt
jordyvl's picture
First commit
e0a78f5
raw
history blame
1.29 kB
Contents
Abstract
iii
Beknopte samenvatting
v
List of Abbreviations
xii
Contents
xiii
List of Figures
xix
List of Tables
xxv
1 Introduction
1.1 Research Context . . . . . . . . . . . . . . . . . . . . . .
1.2 Problem Statement and Questions . . . . . . . . . . . .
1.2.1 Reliable and Robust Deep Learning . . . . . . .
1.2.2 Realistic and Efficient Document Understanding
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
4
6
6
7
9
2 Fundamentals
2.1 Statistical Learning . . . . . . . . . . . . . . . .
2.1.1 Neural Networks . . . . . . . . . . . . .
2.1.2 Probabilistic Evaluation . . . . . . . . .
2.1.3 Architectures . . . . . . . . . . . . . . .
2.1.3.1 Convolutional Neural Networks
2.1.3.2 Language Neural Networks . .
2.1.3.3 Transformer Network . . . . .
2.2 Reliability and Robustness . . . . . . . . . . . .
2.2.1 Generalization and Adaptation . . . . .
2.2.2 Confidence Estimation . . . . . . . . . .
2.2.3 Evaluation Metrics . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11
12
14
15
16
17
18
19
21
22
23
24
xiii
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.