Spaces:
Paused
Paused
tryng with llama3
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
# TODO: question samples
|
3 |
# TEST: with and without GPU instance
|
4 |
# TODO: visual questions on page image (in same app)?
|
5 |
-
|
6 |
|
7 |
import torch
|
8 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
@@ -20,17 +20,41 @@ CHEAPMODE = torch.cuda.is_available()
|
|
20 |
# LLM = "HuggingFaceH4/zephyr-7b-alpha" if not CHEAPMODE else "microsoft/phi-2"
|
21 |
|
22 |
config = {
|
23 |
-
"LLM": "
|
|
|
24 |
"embeddings": "BAAI/bge-small-en-v1.5",
|
25 |
"similarity_top_k": 2,
|
26 |
-
"context_window":
|
27 |
"max_new_tokens": 150,
|
28 |
"temperature": 0.7,
|
29 |
"top_k": 5,
|
30 |
"top_p": 0.95,
|
|
|
|
|
31 |
}
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def messages_to_prompt(messages):
|
35 |
prompt = ""
|
36 |
for message in messages:
|
@@ -54,7 +78,7 @@ def messages_to_prompt(messages):
|
|
54 |
|
55 |
def load_RAG_pipeline(config):
|
56 |
# LLM
|
57 |
-
quantization_config = None
|
58 |
if torch.cuda.is_available():
|
59 |
from transformers import BitsAndBytesConfig
|
60 |
|
@@ -81,17 +105,17 @@ def load_RAG_pipeline(config):
|
|
81 |
# Llama-index
|
82 |
Settings.llm = llm
|
83 |
Settings.embed_model = HuggingFaceEmbedding(model_name=config["embeddings"])
|
84 |
-
|
85 |
-
|
86 |
|
87 |
# raw data
|
88 |
documents = SimpleDirectoryReader("assets/txts").load_data()
|
89 |
vector_index = VectorStoreIndex.from_documents(documents)
|
|
|
90 |
|
91 |
# vector_index.persist(persist_dir="vectors")
|
92 |
# https://docs.llamaindex.ai/en/v0.10.17/understanding/storing/storing.html
|
93 |
|
94 |
-
# summary_index = SummaryIndex.from_documents(documents)
|
95 |
query_engine = vector_index.as_query_engine(response_mode="compact", similarity_top_k=config["similarity_top_k"])
|
96 |
return query_engine
|
97 |
|
@@ -131,7 +155,9 @@ def get_answer_page(response):
|
|
131 |
|
132 |
|
133 |
# Create the gr.Interface function
|
134 |
-
def ask_my_thesis(
|
|
|
|
|
135 |
print(f"Got Q: {question}")
|
136 |
answer = get_answer(question, temperature, nucleus_sampling, max_tokens)
|
137 |
image, answer_page = get_answer_page(answer)
|
@@ -142,22 +168,19 @@ def ask_my_thesis(question, temperature, nucleus_sampling, max_tokens):
|
|
142 |
output_image = gr.Image(label="Answer Page")
|
143 |
|
144 |
# examples
|
|
|
145 |
|
146 |
iface = gr.Interface(
|
147 |
fn=ask_my_thesis,
|
148 |
-
inputs=[
|
149 |
-
|
150 |
gr.Slider(0, 1, value=0.7, label="Temperature"),
|
151 |
gr.Slider(0, 1, value=0.95, label="Nucleus Sampling"),
|
152 |
gr.Slider(1, 500, value=150, label="Max Generated Number of Tokens"),
|
153 |
],
|
154 |
outputs=[gr.Textbox(label="Answer"), output_image, gr.Label()],
|
155 |
-
title=
|
156 |
-
description=
|
157 |
-
|
158 |
-
Spoiler: a RAG application with a >1B LLM and vector store can be quite slow on a 290 page document :hourglass:
|
159 |
-
""",
|
160 |
-
css="body { background-image: url('https://ideogram.ai/api/images/direct/cc3Um6ClQkWJpVdXx6pWVA.png'); }",
|
161 |
allow_flagging="never",
|
162 |
)
|
163 |
# https://github.com/gradio-app/gradio/issues/4309
|
|
|
2 |
# TODO: question samples
|
3 |
# TEST: with and without GPU instance
|
4 |
# TODO: visual questions on page image (in same app)?
|
5 |
+
# expose more parameters
|
6 |
|
7 |
import torch
|
8 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
|
|
20 |
# LLM = "HuggingFaceH4/zephyr-7b-alpha" if not CHEAPMODE else "microsoft/phi-2"
|
21 |
|
22 |
config = {
|
23 |
+
"LLM": "meta-llama/Meta-Llama-3-8B",
|
24 |
+
# "LLM": "microsoft/phi-2",
|
25 |
"embeddings": "BAAI/bge-small-en-v1.5",
|
26 |
"similarity_top_k": 2,
|
27 |
+
"context_window": 4048,
|
28 |
"max_new_tokens": 150,
|
29 |
"temperature": 0.7,
|
30 |
"top_k": 5,
|
31 |
"top_p": 0.95,
|
32 |
+
"chunk_size": 512,
|
33 |
+
"chunk_overlap": 50,
|
34 |
}
|
35 |
|
36 |
|
37 |
+
def center_element(el):
|
38 |
+
return f"<div style='text-align: center;'>{el}</div>"
|
39 |
+
|
40 |
+
|
41 |
+
title = "Ask my thesis: Intelligent Automation for AI-Driven Document Understanding"
|
42 |
+
title = center_element(title)
|
43 |
+
description = """Chat with the thesis manuscript by asking questions and receive answers with reference to the page.
|
44 |
+
|
45 |
+
<div class="span1">
|
46 |
+
<a href="https://jordy-vl.github.io/assets/phdthesis/VanLandeghem_Jordy_PhD-thesis.pdf">
|
47 |
+
<img src="https://ideogram.ai/api/images/direct/cc3Um6ClQkWJpVdXx6pWVA.png"
|
48 |
+
title="Thesis.pdf" alt="Ideogram image generated with prompt engineering"/></a>
|
49 |
+
</div>
|
50 |
+
|
51 |
+
Technology used: [Llama-index](https://www.llamaindex.ai/), OS LLMs from HuggingFace
|
52 |
+
|
53 |
+
Spoiler: a RAG application with a >1B LLM and online vector store can be quite slow on a 290 page document ⏳
|
54 |
+
"""
|
55 |
+
# width="250"
|
56 |
+
description = center_element(description)
|
57 |
+
|
58 |
def messages_to_prompt(messages):
|
59 |
prompt = ""
|
60 |
for message in messages:
|
|
|
78 |
|
79 |
def load_RAG_pipeline(config):
|
80 |
# LLM
|
81 |
+
quantization_config = None # dirty fix for CPU/GPU support
|
82 |
if torch.cuda.is_available():
|
83 |
from transformers import BitsAndBytesConfig
|
84 |
|
|
|
105 |
# Llama-index
|
106 |
Settings.llm = llm
|
107 |
Settings.embed_model = HuggingFaceEmbedding(model_name=config["embeddings"])
|
108 |
+
Settings.chunk_size = config["chunk_size"]
|
109 |
+
Settings.chunk_overlap = config["chunk_overlap"]
|
110 |
|
111 |
# raw data
|
112 |
documents = SimpleDirectoryReader("assets/txts").load_data()
|
113 |
vector_index = VectorStoreIndex.from_documents(documents)
|
114 |
+
# summary_index = SummaryIndex.from_documents(documents)
|
115 |
|
116 |
# vector_index.persist(persist_dir="vectors")
|
117 |
# https://docs.llamaindex.ai/en/v0.10.17/understanding/storing/storing.html
|
118 |
|
|
|
119 |
query_engine = vector_index.as_query_engine(response_mode="compact", similarity_top_k=config["similarity_top_k"])
|
120 |
return query_engine
|
121 |
|
|
|
155 |
|
156 |
|
157 |
# Create the gr.Interface function
|
158 |
+
def ask_my_thesis(
|
159 |
+
question, temperature=config["temperature"], nucleus_sampling=config["top_p"], max_tokens=config["max_new_tokens"]
|
160 |
+
):
|
161 |
print(f"Got Q: {question}")
|
162 |
answer = get_answer(question, temperature, nucleus_sampling, max_tokens)
|
163 |
image, answer_page = get_answer_page(answer)
|
|
|
168 |
output_image = gr.Image(label="Answer Page")
|
169 |
|
170 |
# examples
|
171 |
+
examples = [["Who is Jordy Van Landeghem"], []]
|
172 |
|
173 |
iface = gr.Interface(
|
174 |
fn=ask_my_thesis,
|
175 |
+
inputs=[gr.Textbox(label="Question", placeholder="Type your question here...")],
|
176 |
+
additional_inputs=[
|
177 |
gr.Slider(0, 1, value=0.7, label="Temperature"),
|
178 |
gr.Slider(0, 1, value=0.95, label="Nucleus Sampling"),
|
179 |
gr.Slider(1, 500, value=150, label="Max Generated Number of Tokens"),
|
180 |
],
|
181 |
outputs=[gr.Textbox(label="Answer"), output_image, gr.Label()],
|
182 |
+
title=title,
|
183 |
+
description=description,
|
|
|
|
|
|
|
|
|
184 |
allow_flagging="never",
|
185 |
)
|
186 |
# https://github.com/gradio-app/gradio/issues/4309
|