Spaces:
Paused
Paused
Rahul Bhoyar
commited on
Commit
•
69f43f5
1
Parent(s):
6a89483
Initial commit
Browse files- .gitignore +1 -0
- app.py +73 -0
- requirements.txt +15 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv/
|
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
import configparser
|
5 |
+
from typing_extensions import Concatenate
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter
|
9 |
+
from langchain.vectorstores import FAISS
|
10 |
+
from langchain.chains.question_answering import load_qa_chain
|
11 |
+
from langchain.llms import OpenAI
|
12 |
+
|
13 |
+
from llama_index.llms import Gemini, HuggingFaceInferenceAPI,OpenAI
|
14 |
+
from llama_index import VectorStoreIndex, download_loader
|
15 |
+
from llama_index.embeddings import HuggingFaceEmbedding
|
16 |
+
from llama_index import ServiceContext
|
17 |
+
from llama_index.schema import Document
|
18 |
+
|
19 |
+
def read_pdf(uploaded_file):
|
20 |
+
pdf_reader = PdfReader(uploaded_file)
|
21 |
+
text = ""
|
22 |
+
for page_num in range(len(pdf_reader.pages)):
|
23 |
+
text += pdf_reader.pages[page_num].extract_text()
|
24 |
+
return text
|
25 |
+
|
26 |
+
|
27 |
+
def querying(document_search, chain):
|
28 |
+
query_text = st.text_input("Enter the Query for PDF:")
|
29 |
+
submit = st.button("Generate The response for the query")
|
30 |
+
|
31 |
+
if submit:
|
32 |
+
docs = document_search.similarity_search(query_text)
|
33 |
+
output = chain.run(input_documents=docs, question=query_text)
|
34 |
+
st.write(output)
|
35 |
+
|
36 |
+
def main():
|
37 |
+
st.title("PdfQuerier using LLAMA by Rahul Bhoyar")
|
38 |
+
hf_token = st.text_input("Enter your Hugging Face token:")
|
39 |
+
|
40 |
+
llm = HuggingFaceInferenceAPI(model_name="HuggingFaceH4/zephyr-7b-alpha", token=hf_token)
|
41 |
+
st.markdown("Query your pdf file data with using this chatbot")
|
42 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
|
43 |
+
|
44 |
+
embed_model_uae = HuggingFaceEmbedding(model_name="WhereIsAI/UAE-Large-V1")
|
45 |
+
service_context = ServiceContext.from_defaults(llm=llm, chunk_size=800, chunk_overlap=20, embed_model=embed_model_uae)
|
46 |
+
|
47 |
+
if uploaded_file is not None:
|
48 |
+
file_contents = read_pdf(uploaded_file)
|
49 |
+
documents = Document(text=file_contents)
|
50 |
+
|
51 |
+
st.success("Documents loaded successfully!")
|
52 |
+
|
53 |
+
# Create Vector Store Index
|
54 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context, show_progress=True)
|
55 |
+
|
56 |
+
# Persist Storage Context
|
57 |
+
index.storage_context.persist()
|
58 |
+
|
59 |
+
# Create Query Engine
|
60 |
+
query = st.text_input("Ask a question:")
|
61 |
+
query_engine = index.as_query_engine()
|
62 |
+
if query:
|
63 |
+
# Run Query
|
64 |
+
response = query_engine.query(query)
|
65 |
+
|
66 |
+
# Display Result
|
67 |
+
st.markdown(f"**Response:** {response}")
|
68 |
+
else:
|
69 |
+
st.warning("Please enter a valid pdf.")
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
openai
|
3 |
+
PyPDF2
|
4 |
+
faiss-cpu
|
5 |
+
tiktoken
|
6 |
+
watchdog
|
7 |
+
streamlit
|
8 |
+
fitz
|
9 |
+
llama-index
|
10 |
+
transformers[torch]
|
11 |
+
huggingface_hub[inference]
|
12 |
+
beautifulsoup4
|
13 |
+
unstructured
|
14 |
+
watchdog
|
15 |
+
transformers
|