PoliticalLLM / app.py
jost's picture
Update app.py
f8335d6 verified
raw
history blame
7.1 kB
from chromadb.utils import embedding_functions
import chromadb
from openai import OpenAI
import gradio as gr
import json
import time
anyscale_base_url = "https://api.endpoints.anyscale.com/v1"
multilingual_embeddings = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="jost/multilingual-e5-base-politics-de")
pct_prompt = """Beantworte das folgende Statement mit 'Deutliche Ablehnung', 'Ablehnung', 'Zustimmung' oder 'Deutliche Zustimmung':"""
def load_json_data(filepath):
with open(filepath, 'r', encoding='utf-8') as file:
return json.load(file)
pct_data = load_json_data('data/pct.json')
wahl_o_mat_data = load_json_data('data/wahl-o-mat.json')
def predict(api_key, user_input, model1, model2, prompt_manipulation, direct_steering_option: None, ideology_test: None, political_statement: None):
print("Ideology Test:", ideology_test)
print("Political Statement Number:", political_statement)
if prompt_manipulation == "Impersonation (direct steering)":
prompt = f"""[INST] Du bist ein Politiker der Partei {direct_steering_option}. {pct_prompt} {user_input}\nDeine Antwort darf nur eine der vier Antwortmöglichkeiten beinhalten. [/INST]"""
else:
prompt = f"""[INST] {user_input} [/INST]"""
print(prompt)
# client = chromadb.PersistentClient(path="./manifesto-database")
# manifesto_collection = client.get_or_create_collection(name="manifesto-database", embedding_function=multilingual_embeddings)
# retrieved_context = manifesto_collection.query(query_texts=[user_input], n_results=3, where={"ideology": "Authoritarian-right"})
# contexts = [context for context in retrieved_context['documents']]
# print(contexts[0])
client = OpenAI(base_url=anyscale_base_url, api_key=api_key)
response1 = client.completions.create(
model=model1,
prompt=prompt,
temperature=0.7,
max_tokens=1000).choices[0].text
response2 = client.completions.create(
model=model2,
prompt=prompt,
temperature=0.7,
max_tokens=1000).choices[0].text
return response1, response2
def update_political_statement_options(test_type):
# Append an index starting from 1 before each statement
if test_type == "Wahl-O-Mat":
choices = [f"{i+1}. {statement['text']}" for i, statement in enumerate(wahl_o_mat_data['statements'])]
else: # Assuming "Political Compass Test" uses 'pct.json'
choices = [f"{i+1}. {question['text']}" for i, question in enumerate(pct_data['questions'])]
return gr.Dropdown(choices=choices, label="Political statement", allow_custom_value=False)
def update_direct_steering_options(prompt_type):
# This function returns different choices based on the selected prompt manipulation
options = {
"None": [],
"Impersonation (direct steering)": ["Die Linke", "Bündnis 90/Die Grünen", "AfD", "CDU/CSU"],
"Most similar RAG (indirect steering with related context)": ["Authoritarian-left", "Libertarian-left", "Authoritarian-right", "Libertarian-right"],
"Random RAG (indirect steering with randomized context)": ["Authoritarian-left", "Libertarian-left", "Authoritarian-right", "Libertarian-right"]
}
choices = options.get(prompt_type, [])
# Set the first option as default, or an empty list if no options are available
default_value = choices[0] if choices else []
return gr.Dropdown(choices=choices, value=default_value, interactive=True)
def main():
description = "This is a simple interface to compare two model prodided by Anyscale. Please enter your API key and your message."
with gr.Blocks() as demo:
# Ideology Test drowndown
with gr.Row():
ideology_test = gr.Dropdown(
label="Ideology Test",
choices=["Wahl-O-Mat", "Political Compass Test"],
value="Wahl-O-Mat", # Default value
filterable=False
)
# Initialize 'political_statement' with default 'Wahl-O-Mat' values
political_statement_initial_choices = [f"{i+1}. {statement['text']}" for i, statement in enumerate(wahl_o_mat_data['statements'])]
political_statement = gr.Dropdown(
label="Political Statement",
choices=political_statement_initial_choices, # Set default to 'Wahl-O-Mat' statements
)
# Link the dropdowns so that the political statement dropdown updates based on the selected ideology test
ideology_test.change(fn=update_political_statement_options, inputs=ideology_test, outputs=political_statement)
# Prompt manipulation dropdown
with gr.Row():
prompt_manipulation = gr.Dropdown(
label="Prompt Manipulation",
choices=[
"None",
"Impersonation (direct steering)",
"Most similar RAG (indirect steering with related context)",
"Random RAG (indirect steering with randomized context)"
],
value="None", # default value
filterable=False
)
direct_steering_option = gr.Dropdown(label="Select party/ideology",
value=[], # Set an empty list as the initial value
choices=[],
filterable=False
)
# Link the dropdowns so that the option dropdown updates based on the selected prompt manipulation
prompt_manipulation.change(fn=update_direct_steering_options, inputs=prompt_manipulation, outputs=direct_steering_option)
with gr.Row():
api_key_input = gr.Textbox(label="API Key", placeholder="Enter your API key here", show_label=True, type="password")
user_input = gr.Textbox(label="Prompt", placeholder="Enter your message here")
model_selector1 = gr.Dropdown(label="Model 1", choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mixtral-8x22B-Instruct-v0.1"])
model_selector2 = gr.Dropdown(label="Model 2", choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mixtral-8x22B-Instruct-v0.1"])
submit_btn = gr.Button("Submit")
with gr.Row():
output1 = gr.Textbox(label="Model 1 Response")
output2 = gr.Textbox(label="Model 2 Response")
# submit_btn.click(fn=predict, inputs=[api_key_input, user_input, model_selector1, model_selector2, prompt_manipulation, direct_steering_option], outputs=[output1, output2])
submit_btn.click(
fn=predict,
inputs=[api_key_input, user_input, model_selector1, model_selector2, prompt_manipulation, direct_steering_option, ideology_test, political_statement],
outputs=[output1, output2]
)
demo.launch()
if __name__ == "__main__":
main()