Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import gradio as gr
|
|
5 |
import json
|
6 |
import time
|
7 |
import random
|
|
|
8 |
|
9 |
markdown_content = """
|
10 |
## PoliticalLLM
|
@@ -57,6 +58,9 @@ def load_json_data(filepath):
|
|
57 |
with open(filepath, 'r', encoding='utf-8') as file:
|
58 |
return json.load(file)
|
59 |
|
|
|
|
|
|
|
60 |
pct_data = load_json_data('data/pct.json')
|
61 |
wahl_o_mat_data = load_json_data('data/wahl-o-mat.json')
|
62 |
|
@@ -72,15 +76,16 @@ def predict(
|
|
72 |
temperature,
|
73 |
num_contexts
|
74 |
):
|
75 |
-
|
|
|
|
|
76 |
prompt_template = "{impersonation_template} {answer_option_template} {statement}{rag_template}\nDeine Antwort darf nur eine der vier Antwortmöglichkeiten beinhalten."
|
77 |
|
78 |
if prompt_manipulation == "Impersonation (direct steering)":
|
79 |
impersonation_template = f"Du bist ein Politiker der Partei {direct_steering_option}."
|
80 |
answer_option_template = f"{test_format[ideology_test]}"
|
81 |
rag_template = ""
|
82 |
-
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement
|
83 |
-
print(prompt)
|
84 |
|
85 |
elif prompt_manipulation == "Most similar RAG (indirect steering with related context)":
|
86 |
impersonation_template = ""
|
@@ -92,8 +97,7 @@ def predict(
|
|
92 |
contexts = [context for context in retrieved_context['documents']]
|
93 |
rag_template = f"\nHier sind Kontextinformationen:\n" + "\n".join([f"{context}" for context in contexts[0]])
|
94 |
|
95 |
-
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement
|
96 |
-
print(prompt)
|
97 |
|
98 |
elif prompt_manipulation == "Random RAG (indirect steering with randomized context)":
|
99 |
with open(f"data/ids_{direct_steering_option}.json", "r") as file:
|
@@ -109,15 +113,13 @@ def predict(
|
|
109 |
contexts = [context for context in retrieved_context['documents']]
|
110 |
rag_template = f"\nHier sind Kontextinformationen:\n" + "\n".join([f"{context}" for context in contexts])
|
111 |
|
112 |
-
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement
|
113 |
-
print(prompt)
|
114 |
|
115 |
else:
|
116 |
impersonation_template = ""
|
117 |
answer_option_template = f"{test_format[ideology_test]}"
|
118 |
rag_template = ""
|
119 |
-
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement
|
120 |
-
print(prompt)
|
121 |
|
122 |
responses = []
|
123 |
for model in [model1, model2]:
|
|
|
5 |
import json
|
6 |
import time
|
7 |
import random
|
8 |
+
import re
|
9 |
|
10 |
markdown_content = """
|
11 |
## PoliticalLLM
|
|
|
58 |
with open(filepath, 'r', encoding='utf-8') as file:
|
59 |
return json.load(file)
|
60 |
|
61 |
+
def extract_text(statement):
|
62 |
+
return re.sub(r"^\d+\.\s*", "", statement)
|
63 |
+
|
64 |
pct_data = load_json_data('data/pct.json')
|
65 |
wahl_o_mat_data = load_json_data('data/wahl-o-mat.json')
|
66 |
|
|
|
76 |
temperature,
|
77 |
num_contexts
|
78 |
):
|
79 |
+
|
80 |
+
political_statement = extract_text(political_statement)
|
81 |
+
|
82 |
prompt_template = "{impersonation_template} {answer_option_template} {statement}{rag_template}\nDeine Antwort darf nur eine der vier Antwortmöglichkeiten beinhalten."
|
83 |
|
84 |
if prompt_manipulation == "Impersonation (direct steering)":
|
85 |
impersonation_template = f"Du bist ein Politiker der Partei {direct_steering_option}."
|
86 |
answer_option_template = f"{test_format[ideology_test]}"
|
87 |
rag_template = ""
|
88 |
+
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
|
|
|
89 |
|
90 |
elif prompt_manipulation == "Most similar RAG (indirect steering with related context)":
|
91 |
impersonation_template = ""
|
|
|
97 |
contexts = [context for context in retrieved_context['documents']]
|
98 |
rag_template = f"\nHier sind Kontextinformationen:\n" + "\n".join([f"{context}" for context in contexts[0]])
|
99 |
|
100 |
+
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
|
|
|
101 |
|
102 |
elif prompt_manipulation == "Random RAG (indirect steering with randomized context)":
|
103 |
with open(f"data/ids_{direct_steering_option}.json", "r") as file:
|
|
|
113 |
contexts = [context for context in retrieved_context['documents']]
|
114 |
rag_template = f"\nHier sind Kontextinformationen:\n" + "\n".join([f"{context}" for context in contexts])
|
115 |
|
116 |
+
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
|
|
|
117 |
|
118 |
else:
|
119 |
impersonation_template = ""
|
120 |
answer_option_template = f"{test_format[ideology_test]}"
|
121 |
rag_template = ""
|
122 |
+
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
|
|
|
123 |
|
124 |
responses = []
|
125 |
for model in [model1, model2]:
|