File size: 8,540 Bytes
81e42f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from open_webui.utils.task import prompt_template, prompt_variables_template
from open_webui.utils.misc import (
    add_or_update_system_message,
)

from typing import Callable, Optional
import json


# inplace function: form_data is modified
def apply_model_system_prompt_to_body(
    params: dict, form_data: dict, metadata: Optional[dict] = None, user=None
) -> dict:
    system = params.get("system", None)
    if not system:
        return form_data

    # Metadata (WebUI Usage)
    if metadata:
        variables = metadata.get("variables", {})
        if variables:
            system = prompt_variables_template(system, variables)

    # Legacy (API Usage)
    if user:
        template_params = {
            "user_name": user.name,
            "user_location": user.info.get("location") if user.info else None,
        }
    else:
        template_params = {}

    system = prompt_template(system, **template_params)

    form_data["messages"] = add_or_update_system_message(
        system, form_data.get("messages", [])
    )
    return form_data


# inplace function: form_data is modified
def apply_model_params_to_body(
    params: dict, form_data: dict, mappings: dict[str, Callable]
) -> dict:
    if not params:
        return form_data

    for key, cast_func in mappings.items():
        if (value := params.get(key)) is not None:
            form_data[key] = cast_func(value)

    return form_data


# inplace function: form_data is modified
def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
    mappings = {
        "temperature": float,
        "top_p": float,
        "max_tokens": int,
        "frequency_penalty": float,
        "reasoning_effort": str,
        "seed": lambda x: x,
        "stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
        "logit_bias": lambda x: x,
    }
    return apply_model_params_to_body(params, form_data, mappings)


def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
    # Convert OpenAI parameter names to Ollama parameter names if needed.
    name_differences = {
        "max_tokens": "num_predict",
    }

    for key, value in name_differences.items():
        if (param := params.get(key, None)) is not None:
            # Copy the parameter to new name then delete it, to prevent Ollama warning of invalid option provided
            params[value] = params[key]
            del params[key]

    # See https://github.com/ollama/ollama/blob/main/docs/api.md#request-8
    mappings = {
        "temperature": float,
        "top_p": float,
        "seed": lambda x: x,
        "mirostat": int,
        "mirostat_eta": float,
        "mirostat_tau": float,
        "num_ctx": int,
        "num_batch": int,
        "num_keep": int,
        "num_predict": int,
        "repeat_last_n": int,
        "top_k": int,
        "min_p": float,
        "typical_p": float,
        "repeat_penalty": float,
        "presence_penalty": float,
        "frequency_penalty": float,
        "penalize_newline": bool,
        "stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
        "numa": bool,
        "num_gpu": int,
        "main_gpu": int,
        "low_vram": bool,
        "vocab_only": bool,
        "use_mmap": bool,
        "use_mlock": bool,
        "num_thread": int,
    }

    return apply_model_params_to_body(params, form_data, mappings)


def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]:
    ollama_messages = []

    for message in messages:
        # Initialize the new message structure with the role
        new_message = {"role": message["role"]}

        content = message.get("content", [])
        tool_calls = message.get("tool_calls", None)
        tool_call_id = message.get("tool_call_id", None)

        # Check if the content is a string (just a simple message)
        if isinstance(content, str) and not tool_calls:
            # If the content is a string, it's pure text
            new_message["content"] = content

            # If message is a tool call, add the tool call id to the message
            if tool_call_id:
                new_message["tool_call_id"] = tool_call_id

        elif tool_calls:
            # If tool calls are present, add them to the message
            ollama_tool_calls = []
            for tool_call in tool_calls:
                ollama_tool_call = {
                    "index": tool_call.get("index", 0),
                    "id": tool_call.get("id", None),
                    "function": {
                        "name": tool_call.get("function", {}).get("name", ""),
                        "arguments": json.loads(
                            tool_call.get("function", {}).get("arguments", {})
                        ),
                    },
                }
                ollama_tool_calls.append(ollama_tool_call)
            new_message["tool_calls"] = ollama_tool_calls

            # Put the content to empty string (Ollama requires an empty string for tool calls)
            new_message["content"] = ""

        else:
            # Otherwise, assume the content is a list of dicts, e.g., text followed by an image URL
            content_text = ""
            images = []

            # Iterate through the list of content items
            for item in content:
                # Check if it's a text type
                if item.get("type") == "text":
                    content_text += item.get("text", "")

                # Check if it's an image URL type
                elif item.get("type") == "image_url":
                    img_url = item.get("image_url", {}).get("url", "")
                    if img_url:
                        # If the image url starts with data:, it's a base64 image and should be trimmed
                        if img_url.startswith("data:"):
                            img_url = img_url.split(",")[-1]
                        images.append(img_url)

            # Add content text (if any)
            if content_text:
                new_message["content"] = content_text.strip()

            # Add images (if any)
            if images:
                new_message["images"] = images

        # Append the new formatted message to the result
        ollama_messages.append(new_message)

    return ollama_messages


def convert_payload_openai_to_ollama(openai_payload: dict) -> dict:
    """
    Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions.

    Args:
        openai_payload (dict): The payload originally designed for OpenAI API usage.

    Returns:
        dict: A modified payload compatible with the Ollama API.
    """
    ollama_payload = {}

    # Mapping basic model and message details
    ollama_payload["model"] = openai_payload.get("model")
    ollama_payload["messages"] = convert_messages_openai_to_ollama(
        openai_payload.get("messages")
    )
    ollama_payload["stream"] = openai_payload.get("stream", False)

    if "tools" in openai_payload:
        ollama_payload["tools"] = openai_payload["tools"]

    if "format" in openai_payload:
        ollama_payload["format"] = openai_payload["format"]

    # If there are advanced parameters in the payload, format them in Ollama's options field
    if openai_payload.get("options"):
        ollama_payload["options"] = openai_payload["options"]
        ollama_options = openai_payload["options"]

        # Re-Mapping OpenAI's `max_tokens` -> Ollama's `num_predict`
        if "max_tokens" in ollama_options:
            ollama_options["num_predict"] = ollama_options["max_tokens"]
            del ollama_options[
                "max_tokens"
            ]  # To prevent Ollama warning of invalid option provided

        # Ollama lacks a "system" prompt option. It has to be provided as a direct parameter, so we copy it down.
        if "system" in ollama_options:
            ollama_payload["system"] = ollama_options["system"]
            del ollama_options[
                "system"
            ]  # To prevent Ollama warning of invalid option provided

    # If there is the "stop" parameter in the openai_payload, remap it to the ollama_payload.options
    if "stop" in openai_payload:
        ollama_options = ollama_payload.get("options", {})
        ollama_options["stop"] = openai_payload.get("stop")
        ollama_payload["options"] = ollama_options

    if "metadata" in openai_payload:
        ollama_payload["metadata"] = openai_payload["metadata"]

    return ollama_payload