import os
from contextlib import nullcontext
import gradio as gr
import torch
from torch import autocast
from diffusers import DiffusionPipeline
from transformers import (
pipeline,
MBart50TokenizerFast,
MBartForConditionalGeneration,
)
import utils
device = "cuda" if torch.cuda.is_available() else "cpu"
device_dict = {"cuda": 0, "cpu": -1}
context = autocast if device == "cuda" else nullcontext
dtype = torch.float16 if device == "cuda" else torch.float32
# Detect if code is running in Colab
is_colab = utils.is_google_colab()
colab_instruction = "" if is_colab else """
You can skip the queue using Colab:
![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)
"""
device_print = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
# Add language detection pipeline
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
language_detection_pipeline = pipeline("text-classification",
model=language_detection_model_ckpt,
device=device_dict[device])
# Add model for language translation
trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device)
model_id = "CompVis/stable-diffusion-v1-4"
if is_colab:
pipe = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline="multilingual_stable_diffusion",
detection_pipeline=language_detection_pipeline,
translation_model=trans_model,
translation_tokenizer=trans_tokenizer,
revision="fp16",
torch_dtype=dtype,
)
else:
import streamlit as st
pipe = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline="multilingual_stable_diffusion",
use_auth_token=os.environ["USER_TOKEN"],
detection_pipeline=language_detection_pipeline,
translation_model=trans_model,
translation_tokenizer=trans_tokenizer,
revision="fp16",
torch_dtype=dtype,
)
pipe = pipe.to(device)
#torch.backends.cudnn.benchmark = True
num_samples = 2
def infer(prompt, steps, scale):
with context("cuda"):
images = pipe(num_samples*[prompt],
guidance_scale=scale,
num_inference_steps=int(steps)).images
return images
css = """
a {
color: inherit;
text-decoration: underline;
}
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: #0000FF;
background: #0000FF;
}
input[type='range'] {
accent-color: #0000FF;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
#container-advanced-btns{
display: flex;
flex-wrap: wrap;
justify-content: space-between;
align-items: center;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
#generated_id{
min-height: 700px
}
"""
block = gr.Blocks(css=css)
examples = [
[
'נמר לבן הולך על חוף הים, שקיעה, צבעים חזקים, צלליות, רזלוציה גבוהה, מאוד מפורט ומדוייק, ריאליסטי',
50,
7.5,
],
[
'一隻狗在天堂',
45,
7.5,
],
[
'Una casa en la playa en un atardecer lluvioso',
45,
7.5,
],
[
'Ein Hund, der Orange isst',
45,
7.5,
],
[
"Photo d'un restaurant parisien",
45,
7.5,
],
[
"Franču restorāna fotogrāfija",
45,
7.5,
],
[
"పారిసియన్ రెస్టారెంట్ యొక్క ఫోటో",
45,
7.5,
],
[
"صورة لمطعم باريسي",
45,
7.5,
],
]
with block as demo:
gr.HTML(
f"""
Multilingual Stable Diffusion
Stable Diffusion Pipeline that supports prompts in 50 different languages.
{colab_instruction}
Running on {device_print}{(" in a Google Colab." if is_colab else "")}
"""
)
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt", show_label=False, max_lines=1
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Run").style(
margin=False,
rounded=(False, True, True, False),
)
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(
grid=[2], height="auto"
)
with gr.Row(elem_id="advanced-options"):
steps = gr.Slider(label="Steps", minimum=5, maximum=50, value=45, step=5)
scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
)
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, steps, scale], outputs=gallery, cache_examples=False)
ex.dataset.headers = [""]
text.submit(infer, inputs=[text, steps, scale], outputs=gallery)
btn.click(infer, inputs=[text, steps, scale], outputs=gallery)
gr.HTML(
"""
LICENSE
The model is licensed with a
CreativeML Open RAIL-M license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please
read the license
Biases and content acknowledgment
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the
LAION-5B dataset, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the
model card
"""
)
gr.Markdown('''
[![Twitter Follow](https://img.shields.io/twitter/follow/juancopi81?style=social)](https://twitter.com/juancopi81)
![visitors](https://visitor-badge.glitch.me/badge?page_id=Juancopi81.MultilingualStableDiffusion)
''')
if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)