File size: 8,592 Bytes
bcb84e7
6249bc9
 
 
bcb84e7
6249bc9
 
bcb84e7
6249bc9
 
 
 
 
 
 
80388b4
bcb84e7
6249bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb84e7
6249bc9
bcb84e7
 
 
6249bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5c9693
6249bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb84e7
6249bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr
from typing import Any

import torch
from transformers import pipeline
from diffusers import StableDiffusionPipeline
from TTS.api import TTS

import utils
from youtubeaudioextractor import PytubeAudioExtractor
from transcriber import Transcriber
from textprocessor import TextProcessor
from videocreator import VideoCreator

TRANSCRIBER_MODEL_NAME = "juancopi81/whisper-medium-es"
lang = "es"

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32

# Detect if code is running in Colab
is_colab = utils.is_google_colab()
colab_instruction = "" if is_colab else """
<p>You can skip the queue using Colab: 
<a href="">
<img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>"""
device_print = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"

# Initialize components
audio_extractor = PytubeAudioExtractor()
transcription_pipe = pipeline(
    task="automatic-speech-recognition",
    model=TRANSCRIBER_MODEL_NAME,
    chunk_length_s=30,
    device=device,
)
transcription_pipe.model.config.forced_decoder_ids = transcription_pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
audio_transcriber = Transcriber(transcription_pipe)
openai_model = "text-davinci-003"
text_processor = TextProcessor(openai_model)

image_model_id = "runwayml/stable-diffusion-v1-5"
image_pipeline = StableDiffusionPipeline.from_pretrained(image_model_id,
                                                         torch_dtype=dtype,
                                                         revision="fp16")

image_pipeline = image_pipeline.to(device)

vo_model_name = TTS.list_models()[22]
# Init TTS
tts = TTS(vo_model_name)
video_creator = VideoCreator(tts, image_pipeline)

def datapipeline(url: str) -> Any:
    audio_path_file = audio_extractor.extract(url)
    print(f"Audio file created at: {audio_path_file}")
    transcribed_text = audio_transcriber.transcribe(audio_path_file)
    print("Audio transcription ready!")
    json_scenes = text_processor.get_json_scenes(transcribed_text)
    print("Scenes ready")
    video = video_creator.create_video(json_scenes)
    print("Video at", video)
    return video, video

css = """
        a {
            color: inherit;
            text-decoration: underline;
        }
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: #000000;
            background: #000000;
        }
        input[type='range'] {
            accent-color: #000000;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        #container-advanced-btns{
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
            align-items: center;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
        }
        #share-btn * {
            all: unset;
        }
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #generated_id{
            min-height: 700px
        }
"""
block = gr.Blocks(css=css)

with block as demo:
    gr.HTML(
        f"""
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  YouTube to Illustraded Summary
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                Enter the URL of a YouTuve video (Spanish) and you'll recive a video with an illustraded summary.
                It works for audio books, history lessons, etc. Try it out with a short video (less than 10 minutes).
              </p>
              <p style="margin-bottom: 10px; font-size: 94%">
                Running on <b>{device_print}</b>
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):

                url = gr.Textbox(
                    label="Enter the URL of the YouTubeVideo", show_label=False, max_lines=1
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=False,
                )
                btn = gr.Button("Run").style(
                    margin=False,
                    rounded=(False, True, True, False),
                )
        video_output = gr.Video()
        file_output = gr.File()
        
        btn.click(datapipeline,
                  inputs=[url],
                  outputs=[video_output, file_output])

    gr.HTML(
            """
                <div class="footer">
                    <p>This demos is part of the Whisper Sprint (Dec. 2022).</a>
                    </p>
                </div>
           """
        )
    gr.Markdown('''
      [![Twitter Follow](https://img.shields.io/twitter/follow/juancopi81?style=social)](https://twitter.com/juancopi81)
      ![visitors](https://visitor-badge.glitch.me/badge?page_id=Juancopi81.yt-illustraded-summary)
    ''')

if not is_colab:
    demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)