File size: 8,266 Bytes
462dacf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323
4-bit GPTQ models reduce VRAM usage by about 75%. So LLaMA-7B fits into a 6GB GPU, and LLaMA-30B fits into a 24GB GPU.
## Overview
There are two ways of loading GPTQ models in the web UI at the moment:
* Using AutoGPTQ:
* supports more models
* standardized (no need to guess any parameter)
* is a proper Python library
* ~no wheels are presently available so it requires manual compilation~
* supports loading both triton and cuda models
* Using GPTQ-for-LLaMa directly:
* faster CPU offloading
* faster multi-GPU inference
* supports loading LoRAs using a monkey patch
* requires you to manually figure out the wbits/groupsize/model_type parameters for the model to be able to load it
* supports either only cuda or only triton depending on the branch
For creating new quantizations, I recommend using AutoGPTQ: https://github.com/PanQiWei/AutoGPTQ
## AutoGPTQ
### Installation
No additional steps are necessary as AutoGPTQ is already in the `requirements.txt` for the webui. If you still want or need to install it manually for whatever reason, these are the commands:
```
conda activate textgen
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
pip install .
```
The last command requires `nvcc` to be installed (see the [instructions above](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-1-install-nvcc)).
### Usage
When you quantize a model using AutoGPTQ, a folder containing a filed called `quantize_config.json` will be generated. Place that folder inside your `models/` folder and load it with the `--autogptq` flag:
```
python server.py --autogptq --model model_name
```
Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model.
### Offloading
In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA.
For CPU offloading:
```
python server.py --autogptq --gpu-memory 3000MiB --model model_name
```
For multi-GPU inference:
```
python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name
```
### Using LoRAs with AutoGPTQ
Not supported yet.
## GPTQ-for-LLaMa
GPTQ-for-LLaMa is the original adaptation of GPTQ for the LLaMA model. It was made possible by [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa): https://github.com/qwopqwop200/GPTQ-for-LLaMa
Different branches of GPTQ-for-LLaMa are currently available, including:
| Branch | Comment |
|----|----|
| [Old CUDA branch (recommended)](https://github.com/oobabooga/GPTQ-for-LLaMa/) | The fastest branch, works on Windows and Linux. |
| [Up-to-date triton branch](https://github.com/qwopqwop200/GPTQ-for-LLaMa) | Slightly more precise than the old CUDA branch from 13b upwards, significantly more precise for 7b. 2x slower for small context size and only works on Linux. |
| [Up-to-date CUDA branch](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda) | As precise as the up-to-date triton branch, 10x slower than the old cuda branch for small context size. |
Overall, I recommend using the old CUDA branch. It is included by default in the one-click-installer for this web UI.
### Installation
Start by cloning GPTQ-for-LLaMa into your `text-generation-webui/repositories` folder:
```
mkdir repositories
cd repositories
git clone https://github.com/oobabooga/GPTQ-for-LLaMa.git -b cuda
```
If you want to you to use the up-to-date CUDA or triton branches instead of the old CUDA branch, use these commands:
```
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git -b cuda
```
```
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git -b triton
```
Next you need to install the CUDA extensions. You can do that either by installing the precompiled wheels, or by compiling the wheels yourself.
### Precompiled wheels
Kindly provided by our friend jllllll: https://github.com/jllllll/GPTQ-for-LLaMa-Wheels
Windows:
```
pip install https://github.com/jllllll/GPTQ-for-LLaMa-Wheels/raw/main/quant_cuda-0.0.0-cp310-cp310-win_amd64.whl
```
Linux:
```
pip install https://github.com/jllllll/GPTQ-for-LLaMa-Wheels/raw/Linux-x64/quant_cuda-0.0.0-cp310-cp310-linux_x86_64.whl
```
### Manual installation
#### Step 1: install nvcc
```
conda activate textgen
conda install -c conda-forge cudatoolkit-dev
```
The command above takes some 10 minutes to run and shows no progress bar or updates along the way.
You are also going to need to have a C++ compiler installed. On Linux, `sudo apt install build-essential` or equivalent is enough.
If you're using an older version of CUDA toolkit (e.g. 11.7) but the latest version of `gcc` and `g++` (12.0+), you should downgrade with: `conda install -c conda-forge gxx==11.3.0`. Kernel compilation will fail otherwise.
#### Step 2: compile the CUDA extensions
```
cd repositories/GPTQ-for-LLaMa
python setup_cuda.py install
```
### Getting pre-converted LLaMA weights
* Direct download (recommended):
https://huggingface.co/Neko-Institute-of-Science/LLaMA-7B-4bit-128g
https://huggingface.co/Neko-Institute-of-Science/LLaMA-13B-4bit-128g
https://huggingface.co/Neko-Institute-of-Science/LLaMA-30B-4bit-128g
https://huggingface.co/Neko-Institute-of-Science/LLaMA-65B-4bit-128g
These models were converted with `desc_act=True`. They work just fine with ExLlama. For AutoGPTQ, they will only work on Linux with the `triton` option checked.
* Torrent:
https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617
https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105
These models were converted with `desc_act=False`. As such, they are less accurate, but they work with AutoGPTQ on Windows. The `128g` versions are better from 13b upwards, and worse for 7b. The tokenizer files in the torrents are outdated, in particular the files called `tokenizer_config.json` and `special_tokens_map.json`. Here you can find those files: https://huggingface.co/oobabooga/llama-tokenizer
### Starting the web UI:
Use the `--gptq-for-llama` flag.
For the models converted without `group-size`:
```
python server.py --model llama-7b-4bit --gptq-for-llama
```
For the models converted with `group-size`:
```
python server.py --model llama-13b-4bit-128g --gptq-for-llama --wbits 4 --groupsize 128
```
The command-line flags `--wbits` and `--groupsize` are automatically detected based on the folder names in many cases.
### CPU offloading
It is possible to offload part of the layers of the 4-bit model to the CPU with the `--pre_layer` flag. The higher the number after `--pre_layer`, the more layers will be allocated to the GPU.
With this command, I can run llama-7b with 4GB VRAM:
```
python server.py --model llama-7b-4bit --pre_layer 20
```
This is the performance:
```
Output generated in 123.79 seconds (1.61 tokens/s, 199 tokens)
```
You can also use multiple GPUs with `pre_layer` if using the oobabooga fork of GPTQ, eg `--pre_layer 30 60` will load a LLaMA-30B model half onto your first GPU and half onto your second, or `--pre_layer 20 40` will load 20 layers onto GPU-0, 20 layers onto GPU-1, and 20 layers offloaded to CPU.
### Using LoRAs with GPTQ-for-LLaMa
This requires using a monkey patch that is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit
To use it:
1. Clone `johnsmith0031/alpaca_lora_4bit` into the repositories folder:
```
cd text-generation-webui/repositories
git clone https://github.com/johnsmith0031/alpaca_lora_4bit
```
⚠️ I have tested it with the following commit specifically: `2f704b93c961bf202937b10aac9322b092afdce0`
2. Install https://github.com/sterlind/GPTQ-for-LLaMa with this command:
```
pip install git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
```
3. Start the UI with the `--monkey-patch` flag:
```
python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch
```
|