File size: 7,329 Bytes
462dacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from model import ExLlama, ExLlamaCache, ExLlamaConfig
from tokenizer import ExLlamaTokenizer
from generator import ExLlamaGenerator

import json
import math
import os
import sys
import torch
import torch.nn.functional as F

'''
Passing in model, cache, tokenizer is a total hack because we don't want to have to reinitialize (or move all the globals into a shared state model)
'''

class Perplexity:
    def __init__(self, method="default", model = None, cache = None, tokenizer = None):
        # This needs to be loaded by calling .load()
        self.dataset_chunks = []

        self.model = model
        self.cache = cache
        self.tokenizer = tokenizer

        self._begin()


    def _begin(self):
        if self.cache is None:
            self.cache = ExLlamaCache(self.model)
        else:
            self.cache.current_seq_len = 0


    def _next_logits(self, input_ids, apply_lora, last_id_only = True):
        # n_logits = []
        # a = 0
        # while a < input_ids.shape[-1]:
        #     b = min(input_ids.shape[-1], a + 2048)
        #     n_logits.append(self.model.forward(input_ids[:, a:b], self.cache, last_id_only, lora = apply_lora))
        #     a = b
        #
        # return torch.cat(n_logits, dim = 1)

        return self.model.forward(input_ids, self.cache, last_id_only, lora = apply_lora)


    def _tokenize(self, text):
        return self.tokenizer.encode(text)


    # Load raw dataset from a text file and tokenize into chunks. Each chunk can optionally truncated to allow for
    # evaluating the same data at different sequence lengths

    def load(self, dataset_path, chunk_size, chunk_truncate = None, overlap = 0, minlength = 0, json_key = "text"):

        file_extension = os.path.splitext(dataset_path)[1]

        # JSON format: Returned chunks may be of variable length, with each chunk representing one list item

        if file_extension == '.jsonl' or file_extension == '.json':
            with open(dataset_path) as f:
                for line in f:
                    example = json.loads(line)[json_key]
                    if len(example) > minlength:
                        chunk = self._tokenize(example)
                        chunk = chunk[:, :chunk_size]
                        if chunk_truncate is not None: chunk = chunk[:, :chunk_truncate]
                        self.dataset_chunks.append(chunk)

        # Raw Text: Returned chunks are fixed length windows of the entire tokenized dataset

        else:
            with open(dataset_path, encoding="utf-8") as f:
                text = f.read()

            tokens = self._tokenize(text)

            # overlap shouldn't be bigger than the context, also need at least one token for predicting last...
            if overlap >= chunk_size:
                overlap = chunk_size-2

            # We can't use torch.chunks since it want's to split things into equal sized chunks. Instead, let's do our own chunking
            start = 0
            while start < tokens.size(1):
                chunk = tokens[:, start:start + chunk_size]
                start += chunk_size - overlap
                if chunk_truncate is not None: chunk = chunk[:, :chunk_truncate]
                self.dataset_chunks.append(chunk)


    def test(self, chunk_limit = sys.maxsize, lora = None, tag = "", ppl_token = False):
        if not self.dataset_chunks:
            sys.exit(" xx ERROR: Empty dataset!")

        print(f" -- Testing {min(len(self.dataset_chunks), chunk_limit)} chunks", end="")
        sys.stdout.flush()

        logprob_sum = 0.0
        logprob_count = 0

        chunk_count = 0

        for chunk in self.dataset_chunks:

            self._begin()

            input_ids = chunk[:, :-1]
            target_ids = chunk[:, 1:]

            if ppl_token:
                logits_s = []
                for i in range(input_ids.shape[-1]):
                    logits_t = self._next_logits(input_ids[:, i : i + 1], lora, last_id_only = False)
                    logits_s.append(logits_t)
                logits = torch.cat(logits_s, dim = 1)
            else:
                logits = self._next_logits(input_ids, lora, last_id_only = False)

            log_probs = F.log_softmax(logits, dim=-1)
            token_log_probs = log_probs.gather(-1, target_ids.unsqueeze(-1)).squeeze(-1)

            logprob_sum += token_log_probs.sum().item()
            logprob_count += target_ids.numel()

            if chunk_count % 10 == 0:
                print(".", end = "")
                sys.stdout.flush()

            chunk_count += 1
            if chunk_limit and chunk_count >= chunk_limit:
                break

        mean_log_prob = logprob_sum / logprob_count
        perplexity = math.exp(-mean_log_prob)

        print("")
        print(f" ** Perplexity{tag}: {perplexity:.4f}")


def add_args(parser):

    parser.add_argument("-ppl", "--perplexity", nargs = '?', const = 'default', metavar = "METHOD", help = "Perplexity benchmark. Optionally specify method: gptq-for-llama, llama.cpp (not yet implemented)")
    parser.add_argument("-ppl_ds", "--perplexity_dataset", metavar = "DATAPATH", type = str, help = "Load dataset for perplexity (JSONL if .jsonl, otherwise parses it as raw text)")
    parser.add_argument("-ppl_cn", "--perplexity_chunk_num", nargs = "?", type = int, help = "Number of chunks for perplexity benchmark", default = 100)
    parser.add_argument("-ppl_cs", "--perplexity_chunk_size", type = int, help = "Size of chunks for perplexity benchmark", default = 2048)
    parser.add_argument("-ppl_ct", "--perplexity_chunk_truncate", type = int, help = "Truncated size of chunks for perplexity benchmark", default = 2048)
    parser.add_argument("-ppl_co", "--perplexity_chunk_overlap", type = int, help = "Chunk overlap", default = 0)
    parser.add_argument("-ppl_cm", "--perplexity_chunk_min", type = int, help = "Minimum chunk length", default = 50)
    parser.add_argument("-ppl_key", "--perplexity_json_key", type = str, help = "Key to extract from JSON dataset, default: 'text'", default = "text")
    parser.add_argument("-ppl_t", "--perplexity_token", action = "store_true", help = "Run perplexity test on individual tokens, for debug purposes (slow)")


def post_parse(args):

    if not args.perplexity: return

    # GPTQ-for-LLaMa equivalent

    if args.perplexity == "gptq-for-llama":
        args.perplexity_dataset = "datasets/wikitext2.txt"
        args.perplexity_chunk_num = 128
        args.perplexity_chunk_size = 2048
        args.perplexity_chunk_truncate = 2048
        args.perplexity_chunk_overlap = 0
        args.perplexity_chunk_min = 0

    # Default dataset for legacy method

    if args.perplexity_dataset is None: args.perplexity_dataset = "datasets/wikitext2_val_sample.jsonl"

    print(f" -- Perplexity:")
    print(f" -- - Dataset: {args.perplexity_dataset}")
    print(f" -- - Chunks: {args.perplexity_chunk_num}")
    print(f" -- - Chunk size: {args.perplexity_chunk_size}" + (f" -> {args.perplexity_chunk_truncate}" if args.perplexity_chunk_truncate is not None else ""))
    print(f" -- - Chunk overlap: {args.perplexity_chunk_overlap}")
    print(f" -- - Min. chunk size: {args.perplexity_chunk_min}")
    print(f" -- - Key: {args.perplexity_json_key}")
    if args.perplexity_token: print("f -- - Per-token mode")