juanma1907's picture
Upload folder using huggingface_hub
462dacf
raw
history blame
9.64 kB
import gradio
import torch
from transformers import LogitsProcessor
import numpy as np
from modules import shared
params = {
'color_by_perplexity': False,
'color_by_probability': False,
'ppl_scale': 15.0, # No slider for this right now, because I don't think it really needs to be changed. Very large perplexity scores don't show up often.
#'probability_dropdown': False
}
class PerplexityLogits(LogitsProcessor):
def __init__(self, verbose=False):
self.generated_token_ids = []
self.selected_probs = []
self.top_token_ids_list = []
self.top_probs_list = []
self.perplexities_list = []
self.last_probs = None
self.verbose = verbose
def __call__(self, input_ids, scores):
probs = torch.softmax(scores, dim=-1, dtype=torch.float)
log_probs = torch.nan_to_num(torch.log(probs))
entropy = -torch.sum(probs*log_probs)
entropy = entropy.cpu().numpy()
perplexity = round(float(np.exp(entropy)), 4)
self.perplexities_list.append(perplexity)
last_token_id = int(input_ids[0][-1].cpu().numpy().item())
# Store the generated tokens (not sure why this isn't accessible in the output endpoint!)
self.generated_token_ids.append(last_token_id)
# Get last probability, and add to the list if it wasn't there
if len(self.selected_probs) > 0:
# Is the selected token in the top tokens?
if self.verbose:
print(shared.tokenizer.decode(last_token_id))
print([shared.tokenizer.decode(token_id) for token_id in self.top_token_ids_list[-1]])
print(self.top_probs_list[-1])
if last_token_id in self.top_token_ids_list[-1]:
idx = self.top_token_ids_list[-1].index(last_token_id)
self.selected_probs.append(self.top_probs_list[-1][idx])
else:
self.top_token_ids_list[-1].append(last_token_id)
last_prob = round(float(self.last_probs[last_token_id]), 4)
self.top_probs_list[-1].append(last_prob)
self.selected_probs.append(last_prob)
else:
self.selected_probs.append(1.0) # Placeholder for the last token of the prompt
if self.verbose:
pplbar = "-"
if not np.isnan(perplexity):
pplbar = "*"*round(perplexity)
print(f"{last_token}\t{perplexity:.2f}\t{pplbar}")
# Get top 5 probabilities
top_tokens_and_probs = torch.topk(probs, 5)
top_probs = top_tokens_and_probs.values.cpu().numpy().astype(float).tolist()
top_token_ids = top_tokens_and_probs.indices.cpu().numpy().astype(int).tolist()
self.top_token_ids_list.append(top_token_ids)
self.top_probs_list.append(top_probs)
probs = probs.cpu().numpy().flatten()
self.last_probs = probs # Need to keep this as a reference for top probs
# Doesn't actually modify the logits!
return scores
# Stores the perplexity and top probabilities
ppl_logits_processor = None
def logits_processor_modifier(logits_processor_list, input_ids):
global ppl_logits_processor
ppl_logits_processor = PerplexityLogits()
logits_processor_list.append(ppl_logits_processor)
def output_modifier(text):
global ppl_logits_processor
# TODO: It's probably more efficient to do this above rather than modifying all these lists
# Remove last element of perplexities_list, top_token_ids_list, top_tokens_list, top_probs_list since everything is off by one because this extension runs before generation
perplexities = ppl_logits_processor.perplexities_list[:-1]
top_token_ids_list = ppl_logits_processor.top_token_ids_list[:-1]
top_tokens_list = [[shared.tokenizer.decode(token_id) for token_id in top_token_ids] for top_token_ids in top_token_ids_list]
top_probs_list = ppl_logits_processor.top_probs_list[:-1]
# Remove first element of generated_token_ids, generated_tokens, selected_probs because they are for the last token of the prompt
gen_token_ids = ppl_logits_processor.generated_token_ids[1:]
gen_tokens = [shared.tokenizer.decode(token_id) for token_id in gen_token_ids]
sel_probs = ppl_logits_processor.selected_probs[1:]
end_part = '</span>' # Helps with finding the index after replacing part of the text.
in_code = False # Since the <span> tags mess up code blocks, avoid coloring while inside a code block, based on finding tokens with '`' in them
if params['color_by_probability'] and params['color_by_perplexity']:
i = 0
for token, prob, ppl, top_tokens, top_probs in zip(gen_tokens, sel_probs, perplexities, top_tokens_list, top_probs_list):
if '`' in token:
in_code = not in_code
continue
if in_code:
continue
color = probability_perplexity_color_scale(prob, ppl)
if token in text[i:]:
text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
i += text[i:].find(end_part) + len(end_part)
elif params['color_by_perplexity']:
i = 0
for token, ppl, top_tokens, top_probs in zip(gen_tokens, perplexities, top_tokens_list, top_probs_list):
if '`' in token:
in_code = not in_code
continue
if in_code:
continue
color = perplexity_color_scale(ppl)
if token in text[i:]:
text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
i += text[i:].find(end_part) + len(end_part)
elif params['color_by_probability']:
i = 0
for token, prob, top_tokens, top_probs in zip(gen_tokens, sel_probs, top_tokens_list, top_probs_list):
if '`' in token:
in_code = not in_code
continue
if in_code:
continue
color = probability_color_scale(prob)
if token in text[i:]:
text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
i += text[i:].find(end_part) + len(end_part)
print('Average perplexity:', round(np.mean(perplexities), 4))
return text
# Green-yellow-red color scale
def probability_color_scale(prob):
rv = 0
gv = 0
if prob <= 0.5:
rv = 'ff'
gv = hex(int(255*prob*2))[2:]
if len(gv) < 2:
gv = '0'*(2 - len(gv)) + gv
else:
rv = hex(int(255 - 255*(prob - 0.5)*2))[2:]
gv = 'ff'
if len(rv) < 2:
rv = '0'*(2 - len(rv)) + rv
return rv + gv + '00'
# Red component only, white for 0 perplexity (sorry if you're not in dark mode)
def perplexity_color_scale(ppl):
value = hex(max(int(255.0 - params['ppl_scale']*(float(ppl)-1.0)), 0))[2:]
if len(value) < 2:
value = '0'*(2 - len(value)) + value
return 'ff' + value + value
# Green-yellow-red for probability and blue component for perplexity
def probability_perplexity_color_scale(prob, ppl):
rv = 0
gv = 0
bv = hex(min(max(int(params['ppl_scale']*(float(ppl)-1.0)), 0), 255))[2:]
if len(bv) < 2:
bv = '0'*(2 - len(bv)) + bv
if prob <= 0.5:
rv = 'ff'
gv = hex(int(255*prob*2))[2:]
if len(gv) < 2:
gv = '0'*(2 - len(gv)) + gv
else:
rv = hex(int(255 - 255*(prob - 0.5)*2))[2:]
gv = 'ff'
if len(rv) < 2:
rv = '0'*(2 - len(rv)) + rv
return rv + gv + bv
def add_color_html(token, color):
return f'<span style="color: #{color}">{token}</span>'
"""
# This is still very broken at the moment, needs CSS too but I'm not very good at CSS (and neither is GPT-4 apparently) so I still need to figure that out.
def add_dropdown_html(token, color, top_tokens, top_probs):
html = f'<span class="hoverable" style="color: #{color}">{token}<div class="dropdown"><table class="dropdown-content">'
for token, prob in zip(top_tokens, top_probs):
# TODO: Background color? Bold for selected token?
# Bigger issue: Why is there a newline after the first token, and the dropdown fails there?
# The HTML ends up like <p><span>word</span></p><div>...</div>,
# even though for all other tokens it shows up correctly.
row_color = probability_color_scale(prob)
html += f'<tr><td style="color: #{row_color}">{token}</td><td style="color: #{row_color}">{prob}</td></tr>'
html += '</table></div></span>'
return html
"""
def ui():
color_by_ppl_check = gradio.Checkbox(value=False, label="Color by perplexity", info="Higher perplexity is more red. If also showing probability, higher perplexity has more blue component.")
def update_color_by_ppl_check(x):
params.update({'color_by_perplexity': x})
color_by_ppl_check.change(update_color_by_ppl_check, color_by_ppl_check, None)
color_by_prob_check = gradio.Checkbox(value=False, label="Color by probability", info="Green-yellow-red linear scale, with 100% green, 50% yellow, 0% red.")
def update_color_by_prob_check(x):
params.update({'color_by_probability': x})
color_by_prob_check.change(update_color_by_prob_check, color_by_prob_check, None)
# Doesn't work yet...
"""
prob_dropdown_check = gradio.Checkbox(value=False, label="Probability dropdown")
def update_prob_dropdown_check(x):
params.update({'probability_dropdown': x})
prob_dropdown_check.change(update_prob_dropdown_check, prob_dropdown_check, None)
"""