|
from pathlib import Path |
|
|
|
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig |
|
|
|
import modules.shared as shared |
|
from modules.logging_colors import logger |
|
from modules.models import get_max_memory_dict |
|
|
|
|
|
def load_quantized(model_name): |
|
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') |
|
pt_path = None |
|
|
|
|
|
if shared.args.checkpoint: |
|
pt_path = Path(shared.args.checkpoint) |
|
else: |
|
for ext in ['.safetensors', '.pt', '.bin']: |
|
found = list(path_to_model.glob(f"*{ext}")) |
|
if len(found) > 0: |
|
if len(found) > 1: |
|
logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') |
|
|
|
pt_path = found[-1] |
|
break |
|
|
|
if pt_path is None: |
|
logger.error("The model could not be loaded because its checkpoint file in .bin/.pt/.safetensors format could not be located.") |
|
return |
|
|
|
use_safetensors = pt_path.suffix == '.safetensors' |
|
if not (path_to_model / "quantize_config.json").exists(): |
|
quantize_config = BaseQuantizeConfig( |
|
bits=bits if (bits := shared.args.wbits) > 0 else 4, |
|
group_size=gs if (gs := shared.args.groupsize) > 0 else -1, |
|
desc_act=shared.args.desc_act |
|
) |
|
else: |
|
quantize_config = None |
|
|
|
|
|
params = { |
|
'model_basename': pt_path.stem, |
|
'device': "cuda:0" if not shared.args.cpu else "cpu", |
|
'use_triton': shared.args.triton, |
|
'inject_fused_attention': not shared.args.no_inject_fused_attention, |
|
'inject_fused_mlp': not shared.args.no_inject_fused_mlp, |
|
'use_safetensors': use_safetensors, |
|
'trust_remote_code': shared.args.trust_remote_code, |
|
'max_memory': get_max_memory_dict(), |
|
'quantize_config': quantize_config, |
|
'use_cuda_fp16': not shared.args.no_use_cuda_fp16, |
|
} |
|
|
|
logger.info(f"The AutoGPTQ params are: {params}") |
|
model = AutoGPTQForCausalLM.from_quantized(path_to_model, **params) |
|
|
|
|
|
if hasattr(model, 'model'): |
|
if not hasattr(model, 'dtype'): |
|
if hasattr(model.model, 'dtype'): |
|
model.dtype = model.model.dtype |
|
|
|
if hasattr(model.model, 'model') and hasattr(model.model.model, 'embed_tokens'): |
|
if not hasattr(model, 'embed_tokens'): |
|
model.embed_tokens = model.model.model.embed_tokens |
|
|
|
if not hasattr(model.model, 'embed_tokens'): |
|
model.model.embed_tokens = model.model.model.embed_tokens |
|
|
|
return model |
|
|