judebebo32 commited on
Commit
69f5007
·
verified ·
1 Parent(s): b31d310

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -8
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import nltk
2
  from nltk.corpus import stopwords
3
  from nltk.stem import PorterStemmer
@@ -6,15 +7,26 @@ from sklearn.feature_extraction.text import TfidfVectorizer
6
  from sklearn.metrics.pairwise import cosine_similarity
7
  import gradio as gr
8
 
9
- # Download necessary NLTK data
10
  nltk.download('punkt')
11
  nltk.download('stopwords')
12
 
13
- # Load customer inquiries dataset
14
- with open('my_text_file.txt', 'r') as f:
 
 
 
 
 
 
 
15
  data = f.readlines()
16
 
17
- # Preprocess data
 
 
 
 
18
  def preprocess_text(text):
19
  tokens = word_tokenize(text.lower())
20
  stop_words = set(stopwords.words('english'))
@@ -23,27 +35,29 @@ def preprocess_text(text):
23
  stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens]
24
  return stemmed_tokens
25
 
26
- # Create TF-IDF vectorizer
27
  vectorizer = TfidfVectorizer(analyzer=preprocess_text)
28
  tfidf_matrix = vectorizer.fit_transform(data)
29
 
30
- # Define chatbot logic
31
  def chatbot_response(user_input):
32
  input_vector = vectorizer.transform([user_input])
33
  cosine_similarities = cosine_similarity(input_vector, tfidf_matrix)
34
  most_similar_index = cosine_similarities.argmax()
35
  return data[most_similar_index].strip()
36
 
37
- # Create Gradio interface
38
  def chatbot_interface(user_input):
39
  response = chatbot_response(user_input)
40
  return response
41
 
 
42
  iface = gr.Interface(fn=chatbot_interface,
43
  inputs="text",
44
  outputs="text",
45
  title="FAQ Chatbot",
46
- description="Enter a question to get a response from the chatbot based on the preloaded FAQ data.")
47
 
 
48
  if __name__ == "__main__":
49
  iface.launch()
 
1
+ import os
2
  import nltk
3
  from nltk.corpus import stopwords
4
  from nltk.stem import PorterStemmer
 
7
  from sklearn.metrics.pairwise import cosine_similarity
8
  import gradio as gr
9
 
10
+ # Ensure necessary NLTK downloads
11
  nltk.download('punkt')
12
  nltk.download('stopwords')
13
 
14
+ # Path to the dataset file
15
+ file_path = 'my_text_file.txt'
16
+
17
+ # Check if the file exists
18
+ if not os.path.exists(file_path):
19
+ raise FileNotFoundError(f"{file_path} not found in the environment.")
20
+
21
+ # Load the dataset
22
+ with open(file_path, 'r') as f:
23
  data = f.readlines()
24
 
25
+ # Ensure the data is loaded correctly
26
+ if not data:
27
+ raise ValueError("The dataset is empty or could not be loaded properly.")
28
+
29
+ # Preprocessing function for text
30
  def preprocess_text(text):
31
  tokens = word_tokenize(text.lower())
32
  stop_words = set(stopwords.words('english'))
 
35
  stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens]
36
  return stemmed_tokens
37
 
38
+ # Create a TF-IDF vectorizer
39
  vectorizer = TfidfVectorizer(analyzer=preprocess_text)
40
  tfidf_matrix = vectorizer.fit_transform(data)
41
 
42
+ # Chatbot response function
43
  def chatbot_response(user_input):
44
  input_vector = vectorizer.transform([user_input])
45
  cosine_similarities = cosine_similarity(input_vector, tfidf_matrix)
46
  most_similar_index = cosine_similarities.argmax()
47
  return data[most_similar_index].strip()
48
 
49
+ # Gradio interface
50
  def chatbot_interface(user_input):
51
  response = chatbot_response(user_input)
52
  return response
53
 
54
+ # Create a Gradio interface for the chatbot
55
  iface = gr.Interface(fn=chatbot_interface,
56
  inputs="text",
57
  outputs="text",
58
  title="FAQ Chatbot",
59
+ description="Ask a question to the FAQ chatbot.")
60
 
61
+ # Launch the Gradio app
62
  if __name__ == "__main__":
63
  iface.launch()