import nltk from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from flask import Flask, request, jsonify # Initialize the Flask app app = Flask(__name__) # Download necessary NLTK data nltk.download('punkt') nltk.download('stopwords') # Load customer inquiries dataset with open('my_text_file.txt', 'r') as f: data = f.readlines() # Preprocess data def preprocess_text(text): tokens = word_tokenize(text.lower()) stop_words = set(stopwords.words('english')) filtered_tokens = [word for word in tokens if word not in stop_words] stemmer = PorterStemmer() stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens] return stemmed_tokens # Create TF-IDF vectorizer vectorizer = TfidfVectorizer(analyzer=preprocess_text) tfidf_matrix = vectorizer.fit_transform(data) # Define chatbot logic def chatbot_response(user_input): preprocessed_input = preprocess_text(user_input) input_vector = vectorizer.transform([user_input]) cosine_similarities = cosine_similarity(input_vector, tfidf_matrix) most_similar_index = cosine_similarities.argmax() return data[most_similar_index].strip() # Define routes @app.route('/') def home(): return "Welcome to the Chatbot! Send a POST request to /chat with your message." @app.route('/chat', methods=['POST']) def chat(): user_input = request.json.get('message') if user_input: response = chatbot_response(user_input) return jsonify({'response': response}) else: return jsonify({'error': 'No message provided'}), 400 if __name__ == '__main__': app.run(host='0.0.0.0', port=8080)