import streamlit as st import pandas as pd import pickle # Load the pre-trained model with open('best_model.pkl', 'rb') as model_file: model = pickle.load(model_file) # Load the label encoder with open('label_encoder.pkl', 'rb') as label_encoder_file: label_encoder = pickle.load(label_encoder_file) # Title of the app st.title("Coffee Type Prediction") # Sidebar inputs for user preferences st.sidebar.header("User Preferences") time_of_day = st.sidebar.selectbox("Time of Day", ['morning', 'afternoon', 'evening']) coffee_strength = st.sidebar.selectbox("Coffee Strength", ['mild', 'regular', 'strong']) sweetness_level = st.sidebar.selectbox("Sweetness Level", ['unsweetened', 'lightly sweetened', 'sweet']) milk_type = st.sidebar.selectbox("Milk Type", ['none', 'regular', 'skim', 'almond']) coffee_temperature = st.sidebar.selectbox("Coffee Temperature", ['hot', 'iced', 'cold brew']) flavored_coffee = st.sidebar.selectbox("Flavored Coffee", ['yes', 'no']) caffeine_tolerance = st.sidebar.selectbox("Caffeine Tolerance", ['low', 'medium', 'high']) coffee_bean = st.sidebar.selectbox("Coffee Bean", ['Arabica', 'Robusta', 'blend']) coffee_size = st.sidebar.selectbox("Coffee Size", ['small', 'medium', 'large']) dietary_preferences = st.sidebar.selectbox("Dietary Preferences", ['none', 'vegan', 'lactose-intolerant']) # Encoding the inputs manually (same encoding as in your training data) input_data = pd.DataFrame({ 'Token_0': [time_of_day], 'Token_1': [coffee_strength], 'Token_2': [sweetness_level], 'Token_3': [milk_type], 'Token_4': [coffee_temperature], 'Token_5': [flavored_coffee], 'Token_6': [caffeine_tolerance], 'Token_7': [coffee_bean], 'Token_8': [coffee_size], 'Token_9': [dietary_preferences] }) # One-hot encode the input data (ensure it matches the training data) input_encoded = pd.get_dummies(input_data) # Align columns with the training data (required columns) required_columns = [...] # Include all columns from the original model training data for col in required_columns: if col not in input_encoded.columns: input_encoded[col] = 0 input_encoded = input_encoded[required_columns] # Make the prediction prediction = model.predict(input_encoded)[0] # Reverse the label encoding (map the prediction back to the coffee type) coffee_type = label_encoder.inverse_transform([prediction])[0] # Display the prediction st.subheader(f"Recommended Coffee: {coffee_type}")