import subprocess import sys # Check if scikit-learn is installed, if not install it try: import sklearn except ModuleNotFoundError: subprocess.check_call([sys.executable, "-m", "pip", "install", "scikit-learn"]) import sklearn import gradio as gr import pandas as pd import pickle # Load the pre-trained model with open('best_model.pkl', 'rb') as model_file: model = pickle.load(model_file) # Load the label encoder with open('label_encoder.pkl', 'rb') as label_encoder_file: label_encoder = pickle.load(label_encoder_file) def predict_coffee_type(time_of_day, coffee_strength, sweetness_level, milk_type, coffee_temperature, flavored_coffee, caffeine_tolerance, coffee_bean, coffee_size, dietary_preferences): # Creating input DataFrame for the model input_data = pd.DataFrame({ 'Token_0': [time_of_day], 'Token_1': [coffee_strength], 'Token_2': [sweetness_level], 'Token_3': [milk_type], 'Token_4': [coffee_temperature], 'Token_5': [flavored_coffee], 'Token_6': [caffeine_tolerance], 'Token_7': [coffee_bean], 'Token_8': [coffee_size], 'Token_9': [dietary_preferences] }) # One-hot encode the input data (ensure it matches the training data) input_encoded = pd.get_dummies(input_data) # Align columns with the training data (required columns) required_columns = model.feature_names_in_ # Get the feature columns from the model for col in required_columns: if col not in input_encoded.columns: input_encoded[col] = 0 input_encoded = input_encoded[required_columns] # Make the prediction prediction = model.predict(input_encoded)[0] # Reverse the label encoding (map the prediction back to the coffee type) coffee_type = label_encoder.inverse_transform([prediction])[0] return coffee_type # Gradio Interface using components interface = gr.Interface( fn=predict_coffee_type, inputs=[ gr.Dropdown(['morning', 'afternoon', 'evening'], label="Time of Day"), gr.Dropdown(['mild', 'regular', 'strong'], label="Coffee Strength"), gr.Dropdown(['unsweetened', 'lightly sweetened',