Julien Simon commited on
Commit
c815fb1
1 Parent(s): 07563e9

Initial version

Browse files
Files changed (3) hide show
  1. app.py +72 -0
  2. default_file.csv +21 -0
  3. requirements.txt +2 -0
app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from transformers import (
4
+ AutoModelForSeq2SeqLM,
5
+ AutoModelForTableQuestionAnswering,
6
+ AutoTokenizer,
7
+ pipeline,
8
+ )
9
+
10
+ model_tapex = "microsoft/tapex-large-finetuned-wtq"
11
+ tokenizer_tapex = AutoTokenizer.from_pretrained(model_tapex)
12
+ model_tapex = AutoModelForSeq2SeqLM.from_pretrained(model_tapex)
13
+ pipe_tapex = pipeline(
14
+ "table-question-answering", model=model_tapex, tokenizer=tokenizer_tapex
15
+ )
16
+
17
+ model_tapas = "google/tapas-large-finetuned-wtq"
18
+ tokenizer_tapas = AutoTokenizer.from_pretrained(model_tapas)
19
+ model_tapas = AutoModelForTableQuestionAnswering.from_pretrained(model_tapas)
20
+ pipe_tapas = pipeline(
21
+ "table-question-answering", model=model_tapas, tokenizer=tokenizer_tapas
22
+ )
23
+
24
+
25
+ def process(query, file, correct_answer, rows=20):
26
+ table = pd.read_csv(file.name, header=0).astype(str)
27
+ table = table[:rows]
28
+ result_tapex = pipe_tapex(table=table, query=query)
29
+ result_tapas = pipe_tapas(table=table, query=query)
30
+ return result_tapex["answer"], result_tapas["answer"], correct_answer
31
+
32
+
33
+ # Inputs
34
+ query_text = gr.Text(label="Enter a question")
35
+ input_file = gr.File(label="Upload a CSV file", type="file")
36
+ rows_slider = gr.Slider(label="Number of rows")
37
+
38
+ # Output
39
+ answer_text_tapex = gr.Text(label="TAPEX answer")
40
+ answer_text_tapas = gr.Text(label="TAPAS answer")
41
+
42
+ description = "This Space lets you ask questions on CSV documents with Microsoft [TAPEX-Large](https://huggingface.co/microsoft/tapex-large-finetuned-wtq) and Google [TAPAS-Large](https://huggingface.co/google/tapas-large-finetuned-wtq). \
43
+ Both have been fine-tuned on the [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) dataset. \n\n\
44
+ A sample file with football statistics is available in the repository: \n\n\
45
+ * Which team has the most wins? Answer: Manchester City FC\n\
46
+ * Which team has the most wins: Chelsea, Liverpool or Everton? Answer: Liverpool\n\
47
+ * Which teams have scored less than 40 goals? Answer: Cardiff City FC, Fulham FC, Brighton & Hove Albion FC, Huddersfield Town FC\n\
48
+ * What is the average number of wins? Answer: 16 (rounded)\n\n\
49
+ You can also upload your own CSV file. Please note that maximum sequence length for both models is 1024 tokens, \
50
+ so you may need to limit the number of rows in your CSV file. Chunking is not implemented yet."
51
+
52
+ iface = gr.Interface(
53
+ theme="huggingface",
54
+ description=description,
55
+ layout="vertical",
56
+ fn=process,
57
+ inputs=[query_text, input_file, rows_slider],
58
+ outputs=[answer_text_tapex, answer_text_tapas],
59
+ examples=[
60
+ ["Which team has the most wins?", "default_file.csv", 20],
61
+ [
62
+ "Which team has the most wins: Chelsea, Liverpool or Everton?",
63
+ "default_file.csv",
64
+ 20,
65
+ ],
66
+ ["Which teams have scored less than 40 goals?", "default_file.csv", 20],
67
+ ["What is the average number of wins?", "default_file.csv", 20],
68
+ ],
69
+ allow_flagging="never",
70
+ )
71
+
72
+ iface.launch()
default_file.csv ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ team_name,common_name,wins,draws,draws_home,draws_away,losses,points_per_game,league_position,goals_scored,goals_conceded,goal_difference,total_goal_count
2
+ Arsenal FC,Arsenal,21,7,3,4,10,1.84,5,73,51,22,124
3
+ Tottenham Hotspur FC,Tottenham Hotspur,23,2,2,0,13,1.87,4,67,39,28,106
4
+ Manchester City FC,Manchester City,32,2,0,2,4,2.58,1,95,23,72,118
5
+ Leicester City FC,Leicester City,15,7,3,4,16,1.37,9,51,48,3,99
6
+ Crystal Palace FC,Crystal Palace,14,7,5,2,17,1.29,12,51,53,-2,104
7
+ Everton FC,Everton,15,9,4,5,14,1.42,8,54,46,8,100
8
+ Burnley FC,Burnley,11,7,2,5,20,1.05,15,45,68,-23,113
9
+ Southampton FC,Southampton,9,12,8,4,17,1.03,16,45,65,-20,110
10
+ AFC Bournemouth,AFC Bournemouth,13,6,5,1,19,1.18,14,56,70,-14,126
11
+ Manchester United FC,Manchester United,19,9,6,3,10,1.74,6,65,54,11,119
12
+ Liverpool FC,Liverpool,30,7,2,5,1,2.55,2,89,22,67,111
13
+ Chelsea FC,Chelsea,21,9,6,3,8,1.89,3,63,39,24,102
14
+ West Ham United FC,West Ham United,15,7,4,3,16,1.37,10,52,55,-3,107
15
+ Watford FC,Watford,14,8,3,5,16,1.32,11,52,59,-7,111
16
+ Newcastle United FC,Newcastle United,12,9,1,8,17,1.18,13,42,48,-6,90
17
+ Cardiff City FC,Cardiff City,10,4,2,2,24,0.89,18,34,69,-35,103
18
+ Fulham FC,Fulham,7,5,3,2,26,0.68,19,34,81,-47,115
19
+ Brighton & Hove Albion FC,Brighton & Hove Albion,9,9,5,4,20,0.95,17,35,60,-25,95
20
+ Huddersfield Town FC,Huddersfield Town,3,7,3,4,28,0.42,20,22,76,-54,98
21
+ Wolverhampton Wanderers FC,Wolverhampton Wanderers,16,9,4,5,13,1.5,7,47,46,1,93
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ transformers
2
+ torch