File size: 13,211 Bytes
b6f1234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

import pandas as pd
import shutil, os
import os.path as osp
import numpy as np
from tqdm import tqdm

import torch
from torch_geometric.data import Data
from torch.autograd import Variable

from rdkit import Chem

from data.features import (
    allowable_features,
    atom_to_feature_vector,
    bond_to_feature_vector,
    atom_feature_vector_to_dict,
    bond_feature_vector_to_dict,
)

from utils.data_util import one_hot_vector_sm, one_hot_vector_am, get_atom_feature_dims


def load_dataset(
    cross_val, binary_task, target, args, use_prot=False, advs=False, test=False
):
    """
    Load data and return data in dataframes format for each split and the loader of each split.
    Args:
        cross_val (int): Data partition being used [1-4].
        binary_tast (boolean): Whether to perform binary classification or multiclass classification.
        target (string): Name of the protein target for binary classification.
        args (parser): Complete arguments (configuration) of the model.
        use_prot (boolean): Whether to use the PM module.
        advs (boolean): Whether to train the LM module with adversarial augmentations.
        test (boolean): Whether the model is being tested or trained.
    Return:
        train (loader): Training loader
        valid (loader): Validation loader
        test (loader): Test loader
        data_train (dataframe): Training data dataframe
        data_valid (dataframe): Validation data dataframe
        data_test (dataframe): Test data dataframe

    """
    # TODO: NO QUEREMOS QUE ESTÉ LA PARTICIÓN DEL MULTICLASE?
    # Read all data files
    if not test:
        # Verify cross validation partition is defined
        assert cross_val in [1, 2, 3, 4], "{} data partition is not defined".format(
            cross_val
        )
        print("Loading data...")
        if binary_task:
            path = "data/datasets/AD/"
            A = pd.read_csv(
                path + "Smiles_AD_1.csv", names=["Smiles", "Target", "Label"]
            )
            B = pd.read_csv(
                path + "Smiles_AD_2.csv", names=["Smiles", "Target", "Label"]
            )
            C = pd.read_csv(
                path + "Smiles_AD_3.csv", names=["Smiles", "Target", "Label"]
            )
            D = pd.read_csv(
                path + "Smiles_AD_4.csv", names=["Smiles", "Target", "Label"]
            )
            data_test = pd.read_csv(
                path + "AD_Test.csv", names=["Smiles", "Target", "Label"]
            )
            if use_prot:
                data_target = pd.read_csv(
                    path + "Targets_Fasta.csv", names=["Fasta", "Target", "Label"]
                )
            else:
                data_target = []
        # Generate train and validation splits according to cross validation number
        if cross_val == 1:
            data_train = pd.concat([A, B, C], ignore_index=True)
            data_val = D
        elif cross_val == 2:
            data_train = pd.concat([A, C, D], ignore_index=True)
            data_val = B
        elif cross_val == 3:
            data_train = pd.concat([A, B, D], ignore_index=True)
            data_val = C
        elif cross_val == 4:
            data_train = pd.concat([B, C, D], ignore_index=True)
            data_val = A
        # If in binary classification select data for the specific target being train
        if binary_task:
            data_train = data_train[data_train.Target == target]
            data_val = data_val[data_val.Target == target]
            data_test = data_test[data_test.Target == target]
            if use_prot:
                data_target = data_target[data_target.Target == target]
        # Get dataset for each split
        train = get_dataset(data_train, use_prot, data_target, args, advs)
        valid = get_dataset(data_val, use_prot, data_target, args)
        test = get_dataset(data_test, use_prot, data_target, args)
    else:
        # Read test data file
        if binary_task:
            path = "data/datasets/AD/"
            data_test = pd.read_csv(
                path + "Smiles_AD_Test.csv", names=["Smiles", "Target", "Label"]
            )
            data_test = data_test[data_test.Target == target]
            if use_prot:
                data_target = pd.read_csv(
                    path + "Targets_Fasta.csv", names=["Fasta", "Target", "Label"]
                )
                data_target = data_target[data_target.Target == target]
            else:
                data_target = []
        test = get_dataset(data_test,target=data_target, use_prot=use_prot, args=args, advs=advs, saliency=args.saliency)
        train = []
        valid = []
        data_train = []
        data_val = []
    print("Done.")
    return train, valid, test, data_train, data_val, data_test


def reload_dataset(cross_val, binary_task, target, args, advs=False):
    print("Reloading data")
    args.edge_dict = {}
    if binary_task:
        path = "data/datasets/AD/"
        A = pd.read_csv(path + "Smiles_AD_1.csv", names=["Smiles", "Target", "Label"])
        B = pd.read_csv(path + "Smiles_AD_2.csv", names=["Smiles", "Target", "Label"])
        C = pd.read_csv(path + "Smiles_AD_3.csv", names=["Smiles", "Target", "Label"])
        D = pd.read_csv(path + "Smiles_AD_4.csv", names=["Smiles", "Target", "Label"])
        data_test = pd.read_csv(
            path + "AD_Test.csv", names=["Smiles", "Target", "Label"]
        )

    if cross_val == 1:
        data_train = pd.concat([A, B, C], ignore_index=True)
    elif cross_val == 2:
        data_train = pd.concat([A, C, D], ignore_index=True)
    elif cross_val == 3:
        data_train = pd.concat([A, B, D], ignore_index=True)
    else:
        data_train = pd.concat([B, C, D], ignore_index=True)

    if binary_task:
        data_train = data_train[data_train.Target == target]

    train = get_dataset(data_train, args=args, advs=advs)
    print("Done.")

    return train, data_train


def smiles_to_graph(smiles_string, is_prot=False, received_mol=False, saliency=False):
    """
    Converts SMILES string to graph Data object
    :input: SMILES string (str)
    :return: graph object
    """

    if not is_prot:
        mol = Chem.MolFromSmiles(smiles_string)
    else:
        mol = Chem.MolFromFASTA(smiles_string)
    # atoms
    atom_features_list = []
    atom_feat_dims = get_atom_feature_dims()
    for atom in mol.GetAtoms():
        ftrs = atom_to_feature_vector(atom)
        if saliency:
            ftrs_oh = one_hot_vector_am(ftrs, atom_feat_dims)
            atom_features_list.append(torch.unsqueeze(ftrs_oh, 0))
        else:
            atom_features_list.append(ftrs)

    if saliency:
        x = torch.cat(atom_features_list)
    else:
        x = np.array(atom_features_list, dtype=np.int64)

    # bonds
    num_bond_features = 3  # bond type, bond stereo, is_conjugated
    if len(mol.GetBonds()) > 0:  # mol has bonds
        edges_list = []
        edge_features_list = []
        for bond in mol.GetBonds():
            i = bond.GetBeginAtomIdx()
            j = bond.GetEndAtomIdx()

            edge_feature = bond_to_feature_vector(bond)

            # add edges in both directions
            edges_list.append((i, j))
            edge_features_list.append(edge_feature)
            edges_list.append((j, i))
            edge_features_list.append(edge_feature)

        # data.edge_index: Graph connectivity in COO format with shape [2, num_edges]
        edge_index = np.array(edges_list, dtype=np.int64).T

        # data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features]
        edge_attr = np.array(edge_features_list, dtype=np.int64)

    else:  # mol has no bonds
        edge_index = np.empty((2, 0), dtype=np.int64)
        edge_attr = np.empty((0, num_bond_features), dtype=np.int64)

    return edge_attr, edge_index, x


def smiles_to_graph_advs(
    smiles_string, args, advs=False, received_mol=False, saliency=False
):
    """
    Converts SMILES string to graph Data object
    :input: SMILES string (str)
    :return: graph object
    """
    if not received_mol:
        mol = Chem.MolFromSmiles(smiles_string)
    else:
        mol = smiles_string

    # atoms
    atom_features_list = []
    atom_feat_dims = get_atom_feature_dims()

    for atom in mol.GetAtoms():
        ftrs = atom_to_feature_vector(atom)
        if saliency:
            ftrs_oh = one_hot_vector_am(ftrs, atom_feat_dims)
            atom_features_list.append(torch.unsqueeze(ftrs_oh, 0))
        else:
            atom_features_list.append(ftrs)

    if saliency:
        x = torch.cat(atom_features_list)
    else:
        x = np.array(atom_features_list, dtype=np.int64)

    if advs:
        # bonds
        mol_edge_dict = {}

    num_bond_features = 3  # bond type, bond stereo, is_conjugated
    features_dim1 = torch.eye(5)
    features_dim2 = torch.eye(6)
    features_dim3 = torch.eye(2)
    if len(mol.GetBonds()) > 0:  # mol has bonds
        edges_list = []
        edge_features_list = []
        for bond in mol.GetBonds():
            i = bond.GetBeginAtomIdx()
            j = bond.GetEndAtomIdx()
            edge_feature = bond_to_feature_vector(bond)

            # add edges in both directions
            edges_list.append((i, j))
            edges_list.append((j, i))

            edge_feature_oh = one_hot_vector_sm(
                edge_feature, features_dim1, features_dim2, features_dim3
            )
            if advs:
                mol_edge_dict[(i, j)] = Variable(
                    torch.tensor([1.0]), requires_grad=True
                )

                # add edges in both directions
                edge_features_list.append(
                    torch.unsqueeze(mol_edge_dict[(i, j)] * edge_feature_oh, 0)
                )
                edge_features_list.append(
                    torch.unsqueeze(mol_edge_dict[(i, j)] * edge_feature_oh, 0)
                )
            else:
                # add edges in both directions
                edge_features_list.append(torch.unsqueeze(edge_feature_oh, 0))
                edge_features_list.append(torch.unsqueeze(edge_feature_oh, 0))
        if advs:
            # Update edge dict
            args.edge_dict[smiles_string] = mol_edge_dict

        # data.edge_index: Graph connectivity in COO format with shape [2, num_edges]
        edge_index = np.array(edges_list, dtype=np.int64).T
        # data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features]

        edge_attr = torch.cat(edge_features_list)

    else:  # mol has no bonds
        edge_index = np.empty((2, 0), dtype=np.int64)
        edge_attr = np.empty((0, num_bond_features), dtype=np.int64)
        args.edge_dict[smiles_string] = {}

    return edge_attr, edge_index, x


def get_dataset(
    dataset, use_prot=False, target=None, args=None, advs=False, saliency=False
):
    total_dataset = []
    if use_prot:
        prot_graph = transform_molecule_pg(
            target["Fasta"].item(), label=None, is_prot=use_prot
        )

    for mol, label in tqdm(
        zip(dataset["Smiles"], dataset["Label"]), total=len(dataset["Smiles"])
    ):
        if use_prot:
            total_dataset.append([transform_molecule_pg(mol,label,args, advs, saliency=saliency),prot_graph])
        else:
            total_dataset.append(
                transform_molecule_pg(mol, label, args, advs, saliency=saliency)
            )
    return total_dataset


def get_perturbed_dataset(mols, labels, args):
    total_dataset = []
    for mol, label in zip(mols, labels):
        total_dataset.append(transform_molecule_pg(mol, label, args, received_mol=True))
    return total_dataset


def transform_molecule_pg(
    smiles,
    label,
    args=None,
    advs=False,
    received_mol=False,
    saliency=False,
    is_prot=False,
):

    if is_prot:
        edge_attr_p, edge_index_p, x_p = smiles_to_graph(smiles, is_prot)
        x_p = torch.tensor(x_p)
        edge_index_p = torch.tensor(edge_index_p)
        edge_attr_p = torch.tensor(edge_attr_p)

        return Data(edge_attr=edge_attr_p, edge_index=edge_index_p, x=x_p)

    else:
        if args.advs or received_mol:
            if advs or received_mol:
                edge_attr, edge_index, x = smiles_to_graph_advs(
                    smiles,
                    args,
                    advs=True,
                    received_mol=received_mol,
                    saliency=saliency,
                )
            else:
                edge_attr, edge_index, x = smiles_to_graph_advs(
                    smiles, args, received_mol=received_mol, saliency=saliency
                )
        else:
            edge_attr, edge_index, x = smiles_to_graph(smiles, saliency=saliency)

        if not saliency:
            x = torch.tensor(x)
        y = torch.tensor([label])
        edge_index = torch.tensor(edge_index)
        if not args.advs and not received_mol:
            edge_attr = torch.tensor(edge_attr)

        if received_mol:
            mol = smiles
        else:
            mol = Chem.MolFromSmiles(smiles)

        return Data(
            edge_attr=edge_attr, edge_index=edge_index, x=x, y=y, mol=mol, smiles=smiles
        )