Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import pandas as pd | |
import time | |
from torch_geometric.data import DataLoader | |
from model.model_concatenation import PLANet | |
from utils.args import ArgsInit | |
from utils.model import get_dataset_inference, test_gcn | |
def main(args): | |
if args.use_gpu: | |
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu") | |
else: | |
device = torch.device('cpu') | |
#Numpy and torch seeds | |
torch.manual_seed(args.seed) | |
np.random.seed(args.seed) | |
if device.type == 'cuda': | |
torch.cuda.manual_seed(args.seed) | |
print('%s' % args) | |
data_inference = pd.read_csv( | |
args.input_file_smiles, | |
names=["Smiles"], | |
header=0 | |
) | |
print("Data Inference: ", data_inference) | |
data_target = pd.read_csv( | |
args.target_list, names=["Fasta", "Target", "Label"] | |
) | |
data_target = data_target[data_target.Target == args.target] | |
print("Data Target: ", data_target) | |
test = get_dataset_inference( | |
data_inference, | |
use_prot=args.use_prot, | |
target=data_target, | |
args=args, | |
advs=False, | |
saliency=False, | |
) | |
test_loader = DataLoader(test, batch_size=args.batch_size, shuffle=False, | |
num_workers=args.num_workers) | |
model = PLANet(args).to(device) | |
print('Model inference in: {}'.format(args.inference_path)) | |
start_time = time.time() | |
#Load pre-trained molecule model | |
print('Evaluating...') | |
test_gcn(model, device, test_loader, args) | |
end_time = time.time() | |
total_time = end_time - start_time | |
print('Total time: {}'.format(time.strftime('%H:%M:%S', time.gmtime(total_time)))) | |
if __name__ == "__main__": | |
args = ArgsInit().args | |
# Default args for inference | |
args.nclasses = 2 | |
args.batch_size = 10 | |
args.use_prot = True | |
args.freeze_molecule = True | |
args.conv_encode_edge = True | |
args.learn_t = True | |
args.binary = True | |
main(args) | |