Spaces:
Sleeping
Sleeping
Commit
·
ca540c8
1
Parent(s):
799e642
Added initial app
Browse files
README.md
CHANGED
@@ -1,121 +1,10 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
- **Graph-Based Input Representation**
|
12 |
-
- **Ligand Module (LM):** Converts SMILES sequences of molecules into graph representations.
|
13 |
-
- **Protein Module (PM):** Transforms FASTA sequences of proteins into graph structures.
|
14 |
-
|
15 |
-
- **Deep Graph Convolutional Networks**
|
16 |
-
- Each module employs a deep GCN followed by an average pooling layer to extract meaningful features from the input graphs.
|
17 |
-
|
18 |
-
- **Interaction Prediction**
|
19 |
-
- The feature representations from the LM and PM are concatenated.
|
20 |
-
- A fully connected layer processes the combined features to predict the interaction probability between the ligand and the target protein.
|
21 |
-
|
22 |
-
## Quick Start
|
23 |
-
|
24 |
-
If you want to run PLA-Net without installing it, you can run it freely on this [Hugging Face Space](https://huggingface.co/spaces/juliocesar-io/PLA-Net).
|
25 |
-
|
26 |
-
## Docker Install
|
27 |
-
|
28 |
-
To prevent conflicts with the host machine, it is recommended to run PLA-Net in a Docker container.
|
29 |
-
|
30 |
-
First make sure you have an NVIDIA GPU and [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) installed. Then build the image with the following command:
|
31 |
-
|
32 |
-
```bash
|
33 |
-
docker build -t pla-net:latest .
|
34 |
-
```
|
35 |
-
|
36 |
-
### Inference
|
37 |
-
|
38 |
-
To run inference, run the following command:
|
39 |
-
|
40 |
-
This will run inference for the target protein `ada` with the SMILES in the `input_smiles.csv` file and save the predictions to the `output_predictions.csv` file.
|
41 |
-
|
42 |
-
The prediction file has the following format:
|
43 |
-
|
44 |
-
```bash
|
45 |
-
target,smiles,interaction_probability,interaction_class
|
46 |
-
ada,Cn4c(CCC(=O)Nc3ccc2ccn(CC[C@H](CO)n1cnc(C(N)=O)c1)c2c3)nc5ccccc45,0.9994347542524338,1
|
47 |
-
```
|
48 |
-
|
49 |
-
Where `interaction_class` is 1 if the interaction probability is greater than 0.5, and 0 otherwise.
|
50 |
-
|
51 |
-
```bash
|
52 |
-
docker run \
|
53 |
-
-it --rm --gpus all \
|
54 |
-
-v "$(pwd)":/home/user/output \
|
55 |
-
pla-net:latest \
|
56 |
-
python /home/user/app/scripts/pla_net_inference.py \
|
57 |
-
--use_gpu \
|
58 |
-
--target ada \
|
59 |
-
--target_list /home/user/app/data/datasets/AD/Targets_Fasta.csv \
|
60 |
-
--target_checkpoint_path /home/user/app/pretrained-models/BINARY_ada \
|
61 |
-
--input_file_smiles /home/user/app/example/input_smiles.csv \
|
62 |
-
--output_file /home/user/output/output_predictions.csv
|
63 |
-
```
|
64 |
-
|
65 |
-
Args:
|
66 |
-
|
67 |
-
- `use_gpu`: Use GPU for inference.
|
68 |
-
- `target`: Target protein ID from the list of targets. Check the list of available targets in the [data](https://github.com/juliocesar-io/PLA-Net/blob/main/data/datasets/AD/Targets_Fasta.csv) folder.
|
69 |
-
- `target_list`: Path to the target list CSV file.
|
70 |
-
- `target_checkpoint_path`: Path to the target checkpoint. (e.g. `/workspace/pretrained-models/BINARY_ada`) one checkpoint for each target.
|
71 |
-
- `input_file_smiles`: Path to the input SMILES file.
|
72 |
-
- `output_file`: Path to the output predictions file.
|
73 |
-
|
74 |
-
|
75 |
-
### Gradio Server
|
76 |
-
We provide a simple graphical user interface to run PLA-Net with Gradio. To use it, run the following command:
|
77 |
-
|
78 |
-
```bash
|
79 |
-
docker run \
|
80 |
-
-it --rm --gpus all \
|
81 |
-
-p 7860:7860 \
|
82 |
-
pla-net:latest \
|
83 |
-
python app.py
|
84 |
-
```
|
85 |
-
|
86 |
-
Then open your browser and go to `http://localhost:7860/` to access the web interface.
|
87 |
-
|
88 |
-
|
89 |
-
## Local Install
|
90 |
-
|
91 |
-
To do inference with PLA-Net, you need to install the dependencies and activate the environment. You can do this by running the following commands:
|
92 |
-
|
93 |
-
```bash
|
94 |
-
conda env create -f environment.yml
|
95 |
-
conda activate pla-net
|
96 |
-
```
|
97 |
-
|
98 |
-
Now you can run inference with PLA-Net locally. In the project folder, run the following command:
|
99 |
-
|
100 |
-
```bash
|
101 |
-
python scripts/pla_net_inference.py \
|
102 |
-
--use_gpu \
|
103 |
-
--target ada \
|
104 |
-
--target_list data/datasets/AD/Targets_Fasta.csv \
|
105 |
-
--target_checkpoint_path pretrained-models/BINARY_ada \
|
106 |
-
--input_file_smiles example/input_smiles.csv \
|
107 |
-
--output_file example/output_predictions.csv
|
108 |
-
```
|
109 |
-
|
110 |
-
## Models
|
111 |
-
|
112 |
-
You can download the pre-trained models from [Hugging Face](https://huggingface.co/juliocesar-io/PLA-Net).
|
113 |
-
## Training
|
114 |
-
|
115 |
-
To train each of the components of our method: LM, LM+Advs, LMPM and PLA-Net please refer to planet.sh file and run the desired models.
|
116 |
-
|
117 |
-
To evaluate each of the components of our method: LM, LM+Advs, LMPM and PLA-Net please run the corresponding bash file in the inference folder.
|
118 |
-
|
119 |
-
## Citation
|
120 |
-
|
121 |
-
Ruiz Puentes, P., Rueda-Gensini, L., Valderrama, N. et al. Predicting target–ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery. Sci Rep 12, 8434 (2022). https://doi.org/10.1038/s41598-022-12180-x
|
|
|
1 |
+
---
|
2 |
+
title: PLA-Net
|
3 |
+
emoji: ⚛️
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: docker
|
7 |
+
sdk_version: "{{sdkVersion}}"
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|