from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() learn = load_learner('model.pkl') categories = ('Dog', 'Cat') def classify_img(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['images/cat.jpeg', 'images/dog.jpeg', 'images/dogcat.jpeg'] intf = gr.Interface(fn=classify_img, inputs=image, outputs=label, examples=examples, title = 'Cat vs Dog Images') intf.launch()