|
import datasets |
|
import gradio as gr |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
dataset = load_dataset("justina/celeb-identities") |
|
model = SentenceTransformer("sentence-transformers/clip-ViT-B-16") |
|
|
|
def predict(im1, im2): |
|
image_embs = model.encode([im1, im2]) |
|
similarities = cosine_similarity(image_embs) |
|
sim = similarities[0][1] |
|
threshold = 0.65 |
|
if sim > threshold: |
|
return sim, "SAME PERSON, UNLOCK PHONE" |
|
else: |
|
return sim, "DIFFERENT PEOPLE, DON'T UNLOCK" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("Based on two images, the goal is to recognize the similarities/differences between facial images and determine whether or not to unlock a phone based on a cosine similarity score.") |
|
|
|
with gr.Tab("Image"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
img_inputs = [gr.Image(type="pil", source="upload"), |
|
gr.Image(type="pil", source="upload")] |
|
examples = gr.Examples([["https://live.staticflickr.com/2883/33785597726_47880fa539_b.jpg","https://live.staticflickr.com/65535/49086637987_f7622c3345.jpg"], |
|
["https://live.staticflickr.com/3423/3197571945_123937185f_b.jpg", "https://live.staticflickr.com/7259/7001667239_11cece02c8_b.jpg"], |
|
["https://live.staticflickr.com/4015/4334237247_08af133b4b_b.jpg", "https://live.staticflickr.com/3701/9364116426_87b8918e9d_b.jpg"]], |
|
inputs=img_inputs) |
|
btn = gr.Button("Run") |
|
with gr.Column(): |
|
btn.click(fn=predict, |
|
inputs=img_inputs, |
|
outputs=[gr.Number(label="Similarity"), |
|
gr.Textbox(label="Message")], |
|
) |
|
|
|
with gr.Tab("Webcam"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
img_inputs = [gr.Image(type="pil", source="webcam"), |
|
gr.Image(type="pil", source="webcam")] |
|
btn = gr.Button("Run") |
|
with gr.Column(): |
|
btn.click(fn=predict, |
|
inputs=img_inputs, |
|
outputs=[gr.Number(label="Similarity"), |
|
gr.Textbox(label="Message")], |
|
) |
|
|
|
demo.launch(debug=True) |
|
|