Spaces:
Running
Running
File size: 15,076 Bytes
99ad741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import torch
import lightning
from torch.utils.data import Dataset
from typing import Any, Dict
import argparse
from pydantic import BaseModel
from get_dataset_dictionaries import get_dict_pair
import os
import shutil
import optuna
from optuna.integration import PyTorchLightningPruningCallback
from functools import partial
class FFNModule(torch.nn.Module):
"""
A pytorch module that regresses from a hidden state representation of a word
to its continuous linguistic feature norm vector.
It is a FFN with the general structure of:
input -> (linear -> nonlinearity -> dropout) x (num_layers - 1) -> linear -> output
"""
def __init__(
self,
input_size: int,
output_size: int,
hidden_size: int,
num_layers: int,
dropout: float,
):
super(FFNModule, self).__init__()
layers = []
for _ in range(num_layers - 1):
layers.append(torch.nn.Linear(input_size, hidden_size))
layers.append(torch.nn.ReLU())
layers.append(torch.nn.Dropout(dropout))
# changes input size to hidden size after first layer
input_size = hidden_size
layers.append(torch.nn.Linear(hidden_size, output_size))
self.network = torch.nn.Sequential(*layers)
def forward(self, x):
return self.network(x)
class FFNParams(BaseModel):
input_size: int
output_size: int
hidden_size: int
num_layers: int
dropout: float
class TrainingParams(BaseModel):
num_epochs: int
batch_size: int
learning_rate: float
weight_decay: float
class FeatureNormPredictor(lightning.LightningModule):
def __init__(self, ffn_params : FFNParams, training_params : TrainingParams):
super().__init__()
self.save_hyperparameters()
self.ffn_params = ffn_params
self.training_params = training_params
self.model = FFNModule(**ffn_params.model_dump())
self.loss_function = torch.nn.MSELoss()
self.training_params = training_params
def training_step(self, batch, batch_idx):
x,y = batch
outputs = self.model(x)
loss = self.loss_function(outputs, y)
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
x,y = batch
outputs = self.model(x)
loss = self.loss_function(outputs, y)
self.log("val_loss", loss, on_epoch=True, prog_bar=True)
return loss
def test_step(self, batch, batch_idx):
return self.model(batch)
def predict(self, batch):
return self.model(batch)
def __call__(self, input):
return self.model(input)
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self.parameters(),
lr=self.training_params.learning_rate,
weight_decay=self.training_params.weight_decay,
)
return optimizer
def save_model(self, path: str):
torch.save(self.model.state_dict(), path)
def load_model(self, path: str):
self.model.load_state_dict(torch.load(path))
class HiddenStateFeatureNormDataset(Dataset):
def __init__(
self,
input_embeddings: Dict[str, torch.Tensor],
feature_norms: Dict[str, torch.Tensor],
):
# Invariant: input_embeddings and target_feature_norms have exactly the same keys
# this should be done by the train/test split and upstream data processing
assert(input_embeddings.keys() == feature_norms.keys())
self.words = list(input_embeddings.keys())
self.input_embeddings = torch.stack([
input_embeddings[word] for word in self.words
])
self.feature_norms = torch.stack([
feature_norms[word] for word in self.words
])
def __len__(self):
return len(self.words)
def __getitem__(self, idx):
return self.input_embeddings[idx], self.feature_norms[idx]
# this is used when not optimizing
def train(args : Dict[str, Any]):
# input_embeddings = torch.load(args.input_embeddings)
# feature_norms = torch.load(args.feature_norms)
# words = list(input_embeddings.keys())
input_embeddings, feature_norms, norm_list = get_dict_pair(
args.norm,
args.embedding_dir,
args.lm_layer,
translated= False if args.raw_buchanan else True,
normalized= True if args.normal_buchanan else False
)
norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
norms_file.write("\n".join(norm_list))
norms_file.close()
words = list(input_embeddings.keys())
model = FeatureNormPredictor(
FFNParams(
input_size=input_embeddings[words[0]].shape[0],
output_size=feature_norms[words[0]].shape[0],
hidden_size=args.hidden_size,
num_layers=args.num_layers,
dropout=args.dropout,
),
TrainingParams(
num_epochs=args.num_epochs,
batch_size=args.batch_size,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
),
)
# train/val split
train_size = int(len(words) * 0.8)
valid_size = len(words) - train_size
train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
# TODO: Methodology Decision: should we be normalizing the hidden states/feature norms?
train_embeddings = {word: input_embeddings[word] for word in train_words}
train_feature_norms = {word: feature_norms[word] for word in train_words}
validation_embeddings = {word: input_embeddings[word] for word in validation_words}
validation_feature_norms = {word: feature_norms[word] for word in validation_words}
train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
)
validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
validation_dataloader = torch.utils.data.DataLoader(
validation_dataset,
batch_size=args.batch_size,
shuffle=True,
)
callbacks = [
lightning.pytorch.callbacks.ModelCheckpoint(
save_last=True,
dirpath=args.save_dir,
filename=args.save_model_name,
),
]
if args.early_stopping is not None:
callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
monitor="val_loss",
patience=args.early_stopping,
mode='min',
min_delta=0.0
))
#TODO Design Decision - other trainer args? Is device necessary?
# cpu is fine for the scale of this model - only a few layers and a few hundred words
trainer = lightning.Trainer(
max_epochs=args.num_epochs,
callbacks=callbacks,
accelerator="cpu",
log_every_n_steps=7
)
trainer.fit(model, train_dataloader, validation_dataloader)
trainer.validate(model, validation_dataloader)
return model
# this is used when optimizing
def objective(trial: optuna.trial.Trial, args: Dict[str, Any]) -> float:
# optimizing hidden size, batch size, and learning rate
input_embeddings, feature_norms, norm_list = get_dict_pair(
args.norm,
args.embedding_dir,
args.lm_layer,
translated= False if args.raw_buchanan else True,
normalized= True if args.normal_buchanan else False
)
norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
norms_file.write("\n".join(norm_list))
norms_file.close()
words = list(input_embeddings.keys())
input_size=input_embeddings[words[0]].shape[0]
output_size=feature_norms[words[0]].shape[0]
min_size = min(output_size, input_size)
max_size = min(output_size, 2*input_size)if min_size == input_size else min(2*output_size, input_size)
hidden_size = trial.suggest_int("hidden_size", min_size, max_size, log=True)
batch_size = trial.suggest_int("batch_size", 16, 128, log=True)
learning_rate = trial.suggest_float("learning_rate", 1e-6, 1, log=True)
model = FeatureNormPredictor(
FFNParams(
input_size=input_size,
output_size=output_size,
hidden_size=hidden_size,
num_layers=args.num_layers,
dropout=args.dropout,
),
TrainingParams(
num_epochs=args.num_epochs,
batch_size=batch_size,
learning_rate=learning_rate,
weight_decay=args.weight_decay,
),
)
# train/val split
train_size = int(len(words) * 0.8)
valid_size = len(words) - train_size
train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
train_embeddings = {word: input_embeddings[word] for word in train_words}
train_feature_norms = {word: feature_norms[word] for word in train_words}
validation_embeddings = {word: input_embeddings[word] for word in validation_words}
validation_feature_norms = {word: feature_norms[word] for word in validation_words}
train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
)
validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
validation_dataloader = torch.utils.data.DataLoader(
validation_dataset,
batch_size=args.batch_size,
shuffle=True,
)
callbacks = [
# all trial models will be saved in temporary directory
lightning.pytorch.callbacks.ModelCheckpoint(
save_last=True,
dirpath=os.path.join(args.save_dir,'optuna_trials'),
filename="{}".format(trial.number)
),
]
if args.prune is not None:
callbacks.append(PyTorchLightningPruningCallback(
trial,
monitor='val_loss'
))
if args.early_stopping is not None:
callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
monitor="val_loss",
patience=args.early_stopping,
mode='min',
min_delta=0.0
))
# note that if optimizing is chosen, will automatically not implement vanilla early stopping
#TODO Design Decision - other trainer args? Is device necessary?
# cpu is fine for the scale of this model - only a few layers and a few hundred words
trainer = lightning.Trainer(
max_epochs=args.num_epochs,
callbacks=callbacks,
accelerator="cpu",
log_every_n_steps=7,
# enable_checkpointing=False
)
trainer.fit(model, train_dataloader, validation_dataloader)
trainer.validate(model, validation_dataloader)
return trainer.callback_metrics['val_loss'].item()
if __name__ == "__main__":
# parse args
parser = argparse.ArgumentParser()
#TODO: Design Decision: Should we input paths, to the pre-extracted layers, or the model/layer we want to generate them from
# required inputs
parser.add_argument("--norm", type=str, required=True, help="feature norm set to use")
parser.add_argument("--embedding_dir", type=str, required=True, help=" directory containing embeddings")
parser.add_argument("--lm_layer", type=int, required=True, help="layer of embeddings to use")
# if user selects optimize, hidden_size, batch_size and learning_rate will be optimized.
parser.add_argument("--optimize", action="store_true", help="optimize hyperparameters for training")
parser.add_argument("--prune", action="store_true", help="prune unpromising trials when optimizing")
# optional hyperparameter specs
parser.add_argument("--num_layers", type=int, default=2, help="number of layers in FFN")
parser.add_argument("--hidden_size", type=int, default=100, help="hidden size of FFN")
parser.add_argument("--dropout", type=float, default=0.1, help="dropout rate of FFN")
# set this to at least 100 if doing early stopping
parser.add_argument("--num_epochs", type=int, default=10, help="number of epochs to train for")
parser.add_argument("--batch_size", type=int, default=32, help="batch size for training")
parser.add_argument("--learning_rate", type=float, default=0.001, help="learning rate for training")
parser.add_argument("--weight_decay", type=float, default=0.0, help="weight decay for training")
parser.add_argument("--early_stopping", type=int, default=None, help="number of epochs to wait for early stopping")
# optional dataset specs, for buchanan really
parser.add_argument('--raw_buchanan', action="store_true", help="do not use translated values for buchanan")
parser.add_argument('--normal_buchanan', action="store_true", help="use normalized features for buchanan")
# required for output
parser.add_argument("--save_dir", type=str, required=True, help="directory to save model to")
parser.add_argument("--save_model_name", type=str, required=True, help="name of model to save")
args = parser.parse_args()
if args.early_stopping is not None:
args.num_epochs = max(50, args.num_epochs)
torch.manual_seed(10)
if args.optimize:
# call optimizer code here
print("optimizing for learning rate, batch size, and hidden size")
pruner = optuna.pruners.MedianPruner() if args.prune else optuna.pruners.NopPruner()
sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(direction='minimize', pruner=pruner, sampler=sampler)
study.optimize(partial(objective, args=args), n_trials = 100, timeout=600)
other_params = {
"num_layers": args.num_layers,
"num_epochs": args.num_epochs,
"dropout": args.dropout,
"weight_decay": args.weight_decay,
}
print("Number of finished trials: {}".format(len(study.trials)))
trial = study.best_trial
print("Best trial: "+str(trial.number))
print(" Validation Loss: {}".format(trial.value))
print(" Optimized Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))
print(" User Defined Params: ")
for key, value in other_params.items():
print(" {}: {}".format(key, value))
print('saving best trial')
for filename in os.listdir(os.path.join(args.save_dir,'optuna_trials')):
if filename == "{}.ckpt".format(trial.number):
shutil.move(os.path.join(args.save_dir,'optuna_trials',filename), os.path.join(args.save_dir, "{}.ckpt".format(args.save_model_name)))
shutil.rmtree(os.path.join(args.save_dir,'optuna_trials'))
else:
model = train(args)
|