File size: 15,076 Bytes
99ad741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import torch
import lightning
from torch.utils.data import Dataset
from typing import Any, Dict
import argparse
from pydantic import BaseModel
from get_dataset_dictionaries import get_dict_pair
import os
import shutil

import optuna
from optuna.integration import PyTorchLightningPruningCallback
from functools import partial

class FFNModule(torch.nn.Module):
    """
    A pytorch module that regresses from a hidden state representation of a word
    to its continuous linguistic feature norm vector.

    It is a FFN with the general structure of:
    input -> (linear -> nonlinearity -> dropout) x (num_layers - 1) -> linear -> output
    """
    def __init__(
        self,
        input_size: int,
        output_size: int,
        hidden_size: int,
        num_layers: int,
        dropout: float,
    ):
        super(FFNModule, self).__init__()

        layers = []
        for _ in range(num_layers - 1):
            layers.append(torch.nn.Linear(input_size, hidden_size))
            layers.append(torch.nn.ReLU())
            layers.append(torch.nn.Dropout(dropout))
            # changes input size to hidden size after first layer
            input_size = hidden_size
        layers.append(torch.nn.Linear(hidden_size, output_size))
        self.network = torch.nn.Sequential(*layers)

    def forward(self, x):
        return self.network(x)
    
class FFNParams(BaseModel):
    input_size: int
    output_size: int
    hidden_size: int
    num_layers: int
    dropout: float

class TrainingParams(BaseModel):
    num_epochs: int
    batch_size: int
    learning_rate: float
    weight_decay: float

class FeatureNormPredictor(lightning.LightningModule):
    def __init__(self, ffn_params : FFNParams, training_params : TrainingParams):
        super().__init__()
        self.save_hyperparameters()
        self.ffn_params = ffn_params
        self.training_params = training_params
        self.model = FFNModule(**ffn_params.model_dump())
        self.loss_function = torch.nn.MSELoss()
        self.training_params = training_params

    def training_step(self, batch, batch_idx):
        x,y = batch
        outputs = self.model(x)
        loss = self.loss_function(outputs, y)
        self.log("train_loss", loss)
        return loss
    
    def validation_step(self, batch, batch_idx):
        x,y = batch
        outputs = self.model(x)
        loss = self.loss_function(outputs, y)
        self.log("val_loss", loss, on_epoch=True, prog_bar=True)
        return loss
    
    def test_step(self, batch, batch_idx):
        return self.model(batch)
    
    def predict(self, batch):
        return self.model(batch)
    
    def __call__(self, input):
        return self.model(input)
    
    def configure_optimizers(self):
        optimizer = torch.optim.Adam(
            self.parameters(), 
            lr=self.training_params.learning_rate,
            weight_decay=self.training_params.weight_decay,
        )
        return optimizer
    
    def save_model(self, path: str):
        torch.save(self.model.state_dict(), path)

    def load_model(self, path: str):
        self.model.load_state_dict(torch.load(path))

    
class HiddenStateFeatureNormDataset(Dataset):
    def __init__(
        self, 
        input_embeddings: Dict[str, torch.Tensor],
        feature_norms: Dict[str, torch.Tensor],
    ):
        
        # Invariant: input_embeddings and target_feature_norms have exactly the same keys
        # this should be done by the train/test split and upstream data processing
        assert(input_embeddings.keys() == feature_norms.keys())

        self.words = list(input_embeddings.keys())
        self.input_embeddings = torch.stack([
            input_embeddings[word] for word in self.words
        ])
        self.feature_norms = torch.stack([
            feature_norms[word] for word in self.words
        ])
        
    def __len__(self):
        return len(self.words)
    
    def __getitem__(self, idx):
        return self.input_embeddings[idx], self.feature_norms[idx]

# this is used when not optimizing
def train(args : Dict[str, Any]):

    # input_embeddings = torch.load(args.input_embeddings)
    # feature_norms = torch.load(args.feature_norms)
    # words = list(input_embeddings.keys())

    input_embeddings, feature_norms, norm_list = get_dict_pair(
        args.norm,
        args.embedding_dir,
        args.lm_layer,
        translated= False if args.raw_buchanan else True,
        normalized= True if args.normal_buchanan else False
    ) 
    norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
    norms_file.write("\n".join(norm_list))
    norms_file.close()

    words = list(input_embeddings.keys())
    
    model = FeatureNormPredictor(
        FFNParams(
            input_size=input_embeddings[words[0]].shape[0],
            output_size=feature_norms[words[0]].shape[0],
            hidden_size=args.hidden_size,
            num_layers=args.num_layers,
            dropout=args.dropout,
        ),
        TrainingParams(
            num_epochs=args.num_epochs,
            batch_size=args.batch_size,
            learning_rate=args.learning_rate,
            weight_decay=args.weight_decay,
        ),
    )

    # train/val split
    train_size = int(len(words) * 0.8)
    valid_size = len(words) - train_size
    train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])

    # TODO: Methodology Decision: should we be normalizing the hidden states/feature norms?
    train_embeddings = {word: input_embeddings[word] for word in train_words}
    train_feature_norms = {word: feature_norms[word] for word in train_words}
    validation_embeddings = {word: input_embeddings[word] for word in validation_words}
    validation_feature_norms = {word: feature_norms[word] for word in validation_words}

    train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.batch_size,
        shuffle=True,
    )
    validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
    validation_dataloader = torch.utils.data.DataLoader(
        validation_dataset,
        batch_size=args.batch_size,
        shuffle=True,
    )

    callbacks = [
        lightning.pytorch.callbacks.ModelCheckpoint(
            save_last=True,
            dirpath=args.save_dir,
            filename=args.save_model_name,
        ),
    ]
    if args.early_stopping is not None:
        callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
            monitor="val_loss",
            patience=args.early_stopping,
            mode='min',
            min_delta=0.0
        ))

    #TODO Design Decision - other trainer args? Is device necessary?
    # cpu is fine for the scale of this model - only a few layers and a few hundred words
    trainer = lightning.Trainer(
        max_epochs=args.num_epochs,
        callbacks=callbacks,
        accelerator="cpu",
        log_every_n_steps=7
    )

    trainer.fit(model, train_dataloader, validation_dataloader)

    trainer.validate(model, validation_dataloader)

    return model

# this is used when optimizing
def objective(trial: optuna.trial.Trial, args: Dict[str, Any]) -> float:
    # optimizing hidden size, batch size, and learning rate
    input_embeddings, feature_norms, norm_list = get_dict_pair(
        args.norm,
        args.embedding_dir,
        args.lm_layer,
        translated= False if args.raw_buchanan else True,
        normalized= True if args.normal_buchanan else False
    )
    norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
    norms_file.write("\n".join(norm_list))
    norms_file.close()

    words = list(input_embeddings.keys())
    input_size=input_embeddings[words[0]].shape[0]
    output_size=feature_norms[words[0]].shape[0]
    min_size = min(output_size, input_size)
    max_size = min(output_size, 2*input_size)if min_size == input_size else min(2*output_size, input_size)
    hidden_size = trial.suggest_int("hidden_size", min_size, max_size, log=True)
    batch_size = trial.suggest_int("batch_size", 16, 128, log=True)
    learning_rate = trial.suggest_float("learning_rate", 1e-6, 1, log=True)

    model = FeatureNormPredictor(
        FFNParams(
            input_size=input_size,
            output_size=output_size,
            hidden_size=hidden_size,
            num_layers=args.num_layers,
            dropout=args.dropout,
        ),
        TrainingParams(
            num_epochs=args.num_epochs,
            batch_size=batch_size,
            learning_rate=learning_rate,
            weight_decay=args.weight_decay,
        ),
    )

    # train/val split
    train_size = int(len(words) * 0.8)
    valid_size = len(words) - train_size
    train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])

    train_embeddings = {word: input_embeddings[word] for word in train_words}
    train_feature_norms = {word: feature_norms[word] for word in train_words}
    validation_embeddings = {word: input_embeddings[word] for word in validation_words}
    validation_feature_norms = {word: feature_norms[word] for word in validation_words}

    train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.batch_size,
        shuffle=True,
    )
    validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
    validation_dataloader = torch.utils.data.DataLoader(
        validation_dataset,
        batch_size=args.batch_size,
        shuffle=True,
    )

    callbacks = [
        # all trial models will be saved in temporary directory
        lightning.pytorch.callbacks.ModelCheckpoint(
            save_last=True,
            dirpath=os.path.join(args.save_dir,'optuna_trials'),
            filename="{}".format(trial.number)
        ),
    ]

    if args.prune is not None:
        callbacks.append(PyTorchLightningPruningCallback(
            trial,
            monitor='val_loss'
        ))
        
    if args.early_stopping is not None:
        callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
            monitor="val_loss",
            patience=args.early_stopping,
            mode='min',
            min_delta=0.0
        ))
    # note that if optimizing is chosen, will automatically not implement vanilla early stopping 
    #TODO Design Decision - other trainer args? Is device necessary?
    # cpu is fine for the scale of this model - only a few layers and a few hundred words
    trainer = lightning.Trainer(
        max_epochs=args.num_epochs,
        callbacks=callbacks,
        accelerator="cpu",
        log_every_n_steps=7,
        # enable_checkpointing=False
    )

    trainer.fit(model, train_dataloader, validation_dataloader)

    trainer.validate(model, validation_dataloader)
    
    return trainer.callback_metrics['val_loss'].item()

if __name__ == "__main__":
    # parse args
    parser = argparse.ArgumentParser()
    #TODO: Design Decision: Should we input paths, to the pre-extracted layers, or the model/layer we want to generate them from
    # required inputs
    parser.add_argument("--norm", type=str, required=True, help="feature norm set to use")
    parser.add_argument("--embedding_dir", type=str, required=True, help=" directory containing embeddings")
    parser.add_argument("--lm_layer", type=int, required=True, help="layer of embeddings to use")
    # if user selects optimize, hidden_size, batch_size and learning_rate will be optimized. 
    parser.add_argument("--optimize", action="store_true", help="optimize hyperparameters for training")
    parser.add_argument("--prune", action="store_true", help="prune unpromising trials when optimizing")
    # optional hyperparameter specs
    parser.add_argument("--num_layers", type=int, default=2, help="number of layers in FFN")
    parser.add_argument("--hidden_size", type=int, default=100, help="hidden size of FFN")
    parser.add_argument("--dropout", type=float, default=0.1, help="dropout rate of FFN")
    # set this to at least 100 if doing early stopping
    parser.add_argument("--num_epochs", type=int, default=10, help="number of epochs to train for")
    parser.add_argument("--batch_size", type=int, default=32, help="batch size for training")
    parser.add_argument("--learning_rate", type=float, default=0.001, help="learning rate for training")
    parser.add_argument("--weight_decay", type=float, default=0.0, help="weight decay for training")
    parser.add_argument("--early_stopping", type=int, default=None, help="number of epochs to wait for early stopping")
    # optional dataset specs, for buchanan really
    parser.add_argument('--raw_buchanan', action="store_true", help="do not use translated values for buchanan")
    parser.add_argument('--normal_buchanan', action="store_true", help="use normalized features for buchanan")
    # required for output
    parser.add_argument("--save_dir", type=str, required=True, help="directory to save model to")
    parser.add_argument("--save_model_name", type=str, required=True, help="name of model to save")

    args = parser.parse_args()

    if args.early_stopping is not None:
        args.num_epochs = max(50, args.num_epochs)

    torch.manual_seed(10)

    if args.optimize:
        # call optimizer code here
        print("optimizing for learning rate, batch size, and hidden size")
        pruner = optuna.pruners.MedianPruner() if args.prune else optuna.pruners.NopPruner()
        sampler = optuna.samplers.TPESampler(seed=10)

        study = optuna.create_study(direction='minimize', pruner=pruner, sampler=sampler)
        study.optimize(partial(objective, args=args), n_trials = 100, timeout=600)

        other_params = {
            "num_layers": args.num_layers,
            "num_epochs": args.num_epochs,
            "dropout": args.dropout,
            "weight_decay": args.weight_decay,
        }

        print("Number of finished trials: {}".format(len(study.trials)))

        trial = study.best_trial
        print("Best trial: "+str(trial.number))
        

        print("  Validation Loss: {}".format(trial.value))

        print("  Optimized Params: ")
        for key, value in trial.params.items():
            print("    {}: {}".format(key, value))

        print("  User Defined Params: ")
        for key, value in other_params.items():
            print("    {}: {}".format(key, value))
        
        print('saving best trial')
        for filename in os.listdir(os.path.join(args.save_dir,'optuna_trials')):
            if filename == "{}.ckpt".format(trial.number):
                shutil.move(os.path.join(args.save_dir,'optuna_trials',filename), os.path.join(args.save_dir, "{}.ckpt".format(args.save_model_name)))
        shutil.rmtree(os.path.join(args.save_dir,'optuna_trials'))

    else:   
        model = train(args)