Spaces:
Running
Running
clean model.py
Browse files
model.py
CHANGED
@@ -1,16 +1,6 @@
|
|
1 |
import torch
|
2 |
import lightning
|
3 |
-
# from torch.utils.data import Dataset
|
4 |
-
# from typing import Any, Dict
|
5 |
-
# import argparse
|
6 |
from pydantic import BaseModel
|
7 |
-
# from get_dataset_dictionaries import get_dict_pair
|
8 |
-
# import os
|
9 |
-
# import shutil
|
10 |
-
|
11 |
-
# import optuna
|
12 |
-
# from optuna.integration import PyTorchLightningPruningCallback
|
13 |
-
# from functools import partial
|
14 |
|
15 |
class FFNModule(torch.nn.Module):
|
16 |
"""
|
@@ -102,297 +92,4 @@ class FeatureNormPredictor(lightning.LightningModule):
|
|
102 |
|
103 |
def load_model(self, path: str):
|
104 |
self.model.load_state_dict(torch.load(path))
|
105 |
-
|
106 |
-
|
107 |
-
# class HiddenStateFeatureNormDataset(Dataset):
|
108 |
-
# def __init__(
|
109 |
-
# self,
|
110 |
-
# input_embeddings: Dict[str, torch.Tensor],
|
111 |
-
# feature_norms: Dict[str, torch.Tensor],
|
112 |
-
# ):
|
113 |
-
|
114 |
-
# # Invariant: input_embeddings and target_feature_norms have exactly the same keys
|
115 |
-
# # this should be done by the train/test split and upstream data processing
|
116 |
-
# assert(input_embeddings.keys() == feature_norms.keys())
|
117 |
-
|
118 |
-
# self.words = list(input_embeddings.keys())
|
119 |
-
# self.input_embeddings = torch.stack([
|
120 |
-
# input_embeddings[word] for word in self.words
|
121 |
-
# ])
|
122 |
-
# self.feature_norms = torch.stack([
|
123 |
-
# feature_norms[word] for word in self.words
|
124 |
-
# ])
|
125 |
-
|
126 |
-
# def __len__(self):
|
127 |
-
# return len(self.words)
|
128 |
-
|
129 |
-
# def __getitem__(self, idx):
|
130 |
-
# return self.input_embeddings[idx], self.feature_norms[idx]
|
131 |
-
|
132 |
-
# # this is used when not optimizing
|
133 |
-
# def train(args : Dict[str, Any]):
|
134 |
-
|
135 |
-
# # input_embeddings = torch.load(args.input_embeddings)
|
136 |
-
# # feature_norms = torch.load(args.feature_norms)
|
137 |
-
# # words = list(input_embeddings.keys())
|
138 |
-
|
139 |
-
# input_embeddings, feature_norms, norm_list = get_dict_pair(
|
140 |
-
# args.norm,
|
141 |
-
# args.embedding_dir,
|
142 |
-
# args.lm_layer,
|
143 |
-
# translated= False if args.raw_buchanan else True,
|
144 |
-
# normalized= True if args.normal_buchanan else False
|
145 |
-
# )
|
146 |
-
# norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
|
147 |
-
# norms_file.write("\n".join(norm_list))
|
148 |
-
# norms_file.close()
|
149 |
-
|
150 |
-
# words = list(input_embeddings.keys())
|
151 |
-
|
152 |
-
# model = FeatureNormPredictor(
|
153 |
-
# FFNParams(
|
154 |
-
# input_size=input_embeddings[words[0]].shape[0],
|
155 |
-
# output_size=feature_norms[words[0]].shape[0],
|
156 |
-
# hidden_size=args.hidden_size,
|
157 |
-
# num_layers=args.num_layers,
|
158 |
-
# dropout=args.dropout,
|
159 |
-
# ),
|
160 |
-
# TrainingParams(
|
161 |
-
# num_epochs=args.num_epochs,
|
162 |
-
# batch_size=args.batch_size,
|
163 |
-
# learning_rate=args.learning_rate,
|
164 |
-
# weight_decay=args.weight_decay,
|
165 |
-
# ),
|
166 |
-
# )
|
167 |
-
|
168 |
-
# # train/val split
|
169 |
-
# train_size = int(len(words) * 0.8)
|
170 |
-
# valid_size = len(words) - train_size
|
171 |
-
# train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
|
172 |
-
|
173 |
-
# # TODO: Methodology Decision: should we be normalizing the hidden states/feature norms?
|
174 |
-
# train_embeddings = {word: input_embeddings[word] for word in train_words}
|
175 |
-
# train_feature_norms = {word: feature_norms[word] for word in train_words}
|
176 |
-
# validation_embeddings = {word: input_embeddings[word] for word in validation_words}
|
177 |
-
# validation_feature_norms = {word: feature_norms[word] for word in validation_words}
|
178 |
-
|
179 |
-
# train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
|
180 |
-
# train_dataloader = torch.utils.data.DataLoader(
|
181 |
-
# train_dataset,
|
182 |
-
# batch_size=args.batch_size,
|
183 |
-
# shuffle=True,
|
184 |
-
# )
|
185 |
-
# validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
|
186 |
-
# validation_dataloader = torch.utils.data.DataLoader(
|
187 |
-
# validation_dataset,
|
188 |
-
# batch_size=args.batch_size,
|
189 |
-
# shuffle=True,
|
190 |
-
# )
|
191 |
-
|
192 |
-
# callbacks = [
|
193 |
-
# lightning.pytorch.callbacks.ModelCheckpoint(
|
194 |
-
# save_last=True,
|
195 |
-
# dirpath=args.save_dir,
|
196 |
-
# filename=args.save_model_name,
|
197 |
-
# ),
|
198 |
-
# ]
|
199 |
-
# if args.early_stopping is not None:
|
200 |
-
# callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
|
201 |
-
# monitor="val_loss",
|
202 |
-
# patience=args.early_stopping,
|
203 |
-
# mode='min',
|
204 |
-
# min_delta=0.0
|
205 |
-
# ))
|
206 |
-
|
207 |
-
# #TODO Design Decision - other trainer args? Is device necessary?
|
208 |
-
# # cpu is fine for the scale of this model - only a few layers and a few hundred words
|
209 |
-
# trainer = lightning.Trainer(
|
210 |
-
# max_epochs=args.num_epochs,
|
211 |
-
# callbacks=callbacks,
|
212 |
-
# accelerator="cpu",
|
213 |
-
# log_every_n_steps=7
|
214 |
-
# )
|
215 |
-
|
216 |
-
# trainer.fit(model, train_dataloader, validation_dataloader)
|
217 |
-
|
218 |
-
# trainer.validate(model, validation_dataloader)
|
219 |
-
|
220 |
-
# return model
|
221 |
-
|
222 |
-
# # this is used when optimizing
|
223 |
-
# def objective(trial: optuna.trial.Trial, args: Dict[str, Any]) -> float:
|
224 |
-
# # optimizing hidden size, batch size, and learning rate
|
225 |
-
# input_embeddings, feature_norms, norm_list = get_dict_pair(
|
226 |
-
# args.norm,
|
227 |
-
# args.embedding_dir,
|
228 |
-
# args.lm_layer,
|
229 |
-
# translated= False if args.raw_buchanan else True,
|
230 |
-
# normalized= True if args.normal_buchanan else False
|
231 |
-
# )
|
232 |
-
# norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
|
233 |
-
# norms_file.write("\n".join(norm_list))
|
234 |
-
# norms_file.close()
|
235 |
-
|
236 |
-
# words = list(input_embeddings.keys())
|
237 |
-
# input_size=input_embeddings[words[0]].shape[0]
|
238 |
-
# output_size=feature_norms[words[0]].shape[0]
|
239 |
-
# min_size = min(output_size, input_size)
|
240 |
-
# max_size = min(output_size, 2*input_size)if min_size == input_size else min(2*output_size, input_size)
|
241 |
-
# hidden_size = trial.suggest_int("hidden_size", min_size, max_size, log=True)
|
242 |
-
# batch_size = trial.suggest_int("batch_size", 16, 128, log=True)
|
243 |
-
# learning_rate = trial.suggest_float("learning_rate", 1e-6, 1, log=True)
|
244 |
-
|
245 |
-
# model = FeatureNormPredictor(
|
246 |
-
# FFNParams(
|
247 |
-
# input_size=input_size,
|
248 |
-
# output_size=output_size,
|
249 |
-
# hidden_size=hidden_size,
|
250 |
-
# num_layers=args.num_layers,
|
251 |
-
# dropout=args.dropout,
|
252 |
-
# ),
|
253 |
-
# TrainingParams(
|
254 |
-
# num_epochs=args.num_epochs,
|
255 |
-
# batch_size=batch_size,
|
256 |
-
# learning_rate=learning_rate,
|
257 |
-
# weight_decay=args.weight_decay,
|
258 |
-
# ),
|
259 |
-
# )
|
260 |
-
|
261 |
-
# # train/val split
|
262 |
-
# train_size = int(len(words) * 0.8)
|
263 |
-
# valid_size = len(words) - train_size
|
264 |
-
# train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
|
265 |
-
|
266 |
-
# train_embeddings = {word: input_embeddings[word] for word in train_words}
|
267 |
-
# train_feature_norms = {word: feature_norms[word] for word in train_words}
|
268 |
-
# validation_embeddings = {word: input_embeddings[word] for word in validation_words}
|
269 |
-
# validation_feature_norms = {word: feature_norms[word] for word in validation_words}
|
270 |
-
|
271 |
-
# train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
|
272 |
-
# train_dataloader = torch.utils.data.DataLoader(
|
273 |
-
# train_dataset,
|
274 |
-
# batch_size=args.batch_size,
|
275 |
-
# shuffle=True,
|
276 |
-
# )
|
277 |
-
# validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
|
278 |
-
# validation_dataloader = torch.utils.data.DataLoader(
|
279 |
-
# validation_dataset,
|
280 |
-
# batch_size=args.batch_size,
|
281 |
-
# shuffle=True,
|
282 |
-
# )
|
283 |
-
|
284 |
-
# callbacks = [
|
285 |
-
# # all trial models will be saved in temporary directory
|
286 |
-
# lightning.pytorch.callbacks.ModelCheckpoint(
|
287 |
-
# save_last=True,
|
288 |
-
# dirpath=os.path.join(args.save_dir,'optuna_trials'),
|
289 |
-
# filename="{}".format(trial.number)
|
290 |
-
# ),
|
291 |
-
# ]
|
292 |
-
|
293 |
-
# if args.prune is not None:
|
294 |
-
# callbacks.append(PyTorchLightningPruningCallback(
|
295 |
-
# trial,
|
296 |
-
# monitor='val_loss'
|
297 |
-
# ))
|
298 |
-
|
299 |
-
# if args.early_stopping is not None:
|
300 |
-
# callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
|
301 |
-
# monitor="val_loss",
|
302 |
-
# patience=args.early_stopping,
|
303 |
-
# mode='min',
|
304 |
-
# min_delta=0.0
|
305 |
-
# ))
|
306 |
-
# # note that if optimizing is chosen, will automatically not implement vanilla early stopping
|
307 |
-
# #TODO Design Decision - other trainer args? Is device necessary?
|
308 |
-
# # cpu is fine for the scale of this model - only a few layers and a few hundred words
|
309 |
-
# trainer = lightning.Trainer(
|
310 |
-
# max_epochs=args.num_epochs,
|
311 |
-
# callbacks=callbacks,
|
312 |
-
# accelerator="cpu",
|
313 |
-
# log_every_n_steps=7,
|
314 |
-
# # enable_checkpointing=False
|
315 |
-
# )
|
316 |
-
|
317 |
-
# trainer.fit(model, train_dataloader, validation_dataloader)
|
318 |
-
|
319 |
-
# trainer.validate(model, validation_dataloader)
|
320 |
-
|
321 |
-
# return trainer.callback_metrics['val_loss'].item()
|
322 |
-
|
323 |
-
# if __name__ == "__main__":
|
324 |
-
# # parse args
|
325 |
-
# parser = argparse.ArgumentParser()
|
326 |
-
# #TODO: Design Decision: Should we input paths, to the pre-extracted layers, or the model/layer we want to generate them from
|
327 |
-
# # required inputs
|
328 |
-
# parser.add_argument("--norm", type=str, required=True, help="feature norm set to use")
|
329 |
-
# parser.add_argument("--embedding_dir", type=str, required=True, help=" directory containing embeddings")
|
330 |
-
# parser.add_argument("--lm_layer", type=int, required=True, help="layer of embeddings to use")
|
331 |
-
# # if user selects optimize, hidden_size, batch_size and learning_rate will be optimized.
|
332 |
-
# parser.add_argument("--optimize", action="store_true", help="optimize hyperparameters for training")
|
333 |
-
# parser.add_argument("--prune", action="store_true", help="prune unpromising trials when optimizing")
|
334 |
-
# # optional hyperparameter specs
|
335 |
-
# parser.add_argument("--num_layers", type=int, default=2, help="number of layers in FFN")
|
336 |
-
# parser.add_argument("--hidden_size", type=int, default=100, help="hidden size of FFN")
|
337 |
-
# parser.add_argument("--dropout", type=float, default=0.1, help="dropout rate of FFN")
|
338 |
-
# # set this to at least 100 if doing early stopping
|
339 |
-
# parser.add_argument("--num_epochs", type=int, default=10, help="number of epochs to train for")
|
340 |
-
# parser.add_argument("--batch_size", type=int, default=32, help="batch size for training")
|
341 |
-
# parser.add_argument("--learning_rate", type=float, default=0.001, help="learning rate for training")
|
342 |
-
# parser.add_argument("--weight_decay", type=float, default=0.0, help="weight decay for training")
|
343 |
-
# parser.add_argument("--early_stopping", type=int, default=None, help="number of epochs to wait for early stopping")
|
344 |
-
# # optional dataset specs, for buchanan really
|
345 |
-
# parser.add_argument('--raw_buchanan', action="store_true", help="do not use translated values for buchanan")
|
346 |
-
# parser.add_argument('--normal_buchanan', action="store_true", help="use normalized features for buchanan")
|
347 |
-
# # required for output
|
348 |
-
# parser.add_argument("--save_dir", type=str, required=True, help="directory to save model to")
|
349 |
-
# parser.add_argument("--save_model_name", type=str, required=True, help="name of model to save")
|
350 |
-
|
351 |
-
# args = parser.parse_args()
|
352 |
-
|
353 |
-
# if args.early_stopping is not None:
|
354 |
-
# args.num_epochs = max(50, args.num_epochs)
|
355 |
-
|
356 |
-
# torch.manual_seed(10)
|
357 |
-
|
358 |
-
# if args.optimize:
|
359 |
-
# # call optimizer code here
|
360 |
-
# print("optimizing for learning rate, batch size, and hidden size")
|
361 |
-
# pruner = optuna.pruners.MedianPruner() if args.prune else optuna.pruners.NopPruner()
|
362 |
-
# sampler = optuna.samplers.TPESampler(seed=10)
|
363 |
-
|
364 |
-
# study = optuna.create_study(direction='minimize', pruner=pruner, sampler=sampler)
|
365 |
-
# study.optimize(partial(objective, args=args), n_trials = 100, timeout=600)
|
366 |
-
|
367 |
-
# other_params = {
|
368 |
-
# "num_layers": args.num_layers,
|
369 |
-
# "num_epochs": args.num_epochs,
|
370 |
-
# "dropout": args.dropout,
|
371 |
-
# "weight_decay": args.weight_decay,
|
372 |
-
# }
|
373 |
-
|
374 |
-
# print("Number of finished trials: {}".format(len(study.trials)))
|
375 |
-
|
376 |
-
# trial = study.best_trial
|
377 |
-
# print("Best trial: "+str(trial.number))
|
378 |
-
|
379 |
-
|
380 |
-
# print(" Validation Loss: {}".format(trial.value))
|
381 |
-
|
382 |
-
# print(" Optimized Params: ")
|
383 |
-
# for key, value in trial.params.items():
|
384 |
-
# print(" {}: {}".format(key, value))
|
385 |
-
|
386 |
-
# print(" User Defined Params: ")
|
387 |
-
# for key, value in other_params.items():
|
388 |
-
# print(" {}: {}".format(key, value))
|
389 |
-
|
390 |
-
# print('saving best trial')
|
391 |
-
# for filename in os.listdir(os.path.join(args.save_dir,'optuna_trials')):
|
392 |
-
# if filename == "{}.ckpt".format(trial.number):
|
393 |
-
# shutil.move(os.path.join(args.save_dir,'optuna_trials',filename), os.path.join(args.save_dir, "{}.ckpt".format(args.save_model_name)))
|
394 |
-
# shutil.rmtree(os.path.join(args.save_dir,'optuna_trials'))
|
395 |
-
|
396 |
-
# else:
|
397 |
-
# model = train(args)
|
398 |
|
|
|
1 |
import torch
|
2 |
import lightning
|
|
|
|
|
|
|
3 |
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
class FFNModule(torch.nn.Module):
|
6 |
"""
|
|
|
92 |
|
93 |
def load_model(self, path: str):
|
94 |
self.model.load_state_dict(torch.load(path))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|