Spaces:
Runtime error
Runtime error
File size: 6,928 Bytes
9d21d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import json
from pathlib import Path
import gradio as gr
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from common import setup_cpu
from models import build_tokenizer, build_model
from models.meta_optimizer import AttnOptimWrapper
from tasks import load_task
from tasks.loader import TokenizedForMCRightPad
DISPLAY_MAPPING = {
"sst2": {"positive": "Pos", "negative": "Neg"},
"trec": {},
}
@torch.no_grad()
def do_infer_probs(model, exemplar_attn_kv, exemplar_attn_mask, batched_choices_input):
batched_choices_logprobs = []
for batched_one_choice_input in batched_choices_input:
batch_input_ids, batch_attention_mask, batch_choice_start, batch_choice_end = batched_one_choice_input
bs = len(batch_input_ids)
merged_attn_mask = torch.cat((exemplar_attn_mask.expand(bs, -1), batch_attention_mask), dim=1)
# [B, #Heads, Length, Hidden]
expand_exemplar_attn_kv = [[layer_k.expand((bs, -1, -1, -1)), layer_v.expand((bs, -1, -1, -1))] for layer_k, layer_v in exemplar_attn_kv]
batched_logits = model(
input_ids=batch_input_ids, # [B, L']
attention_mask=merged_attn_mask, # [B, L + L']
past_key_values=expand_exemplar_attn_kv, # num_layers * 2 * [B, num_heads, L, H]
).logits
batched_output = F.log_softmax(batched_logits, dim=-1) # [B, L', Vocab]
batched_one_choice_logprobs = []
for input_ids, choice_start, choice_end, lm_logprobs in zip(batch_input_ids, batch_choice_start, batch_choice_end, batched_output):
choice_tokens = input_ids[choice_start:choice_end].unsqueeze(1) # [L, 1]
choice_logprobs = lm_logprobs[choice_start - 1 : choice_end - 1] # [L, Vocab]
extracted = torch.gather(choice_logprobs, -1, choice_tokens).squeeze(-1)
choice_length = choice_end - choice_start
lm_log_p = torch.sum(extracted).item()
norm_lm_log_p = (lm_log_p / choice_length).item()
choice_lm_info = {"lm_log_p": lm_log_p, "norm_lm_log_p": norm_lm_log_p}
batched_one_choice_logprobs.append(choice_lm_info)
batched_choices_logprobs.append(batched_one_choice_logprobs)
return batched_choices_logprobs
@torch.no_grad()
def process_once(dataset_name, exemplar_str, forward_steps, raw_data):
model_name, model_size = "opt", "125m"
step_size, momentum = 0.01, 0.9
setup_cpu(seed=seed)
TaskHandler = load_task(dataset_name)
task_agent = TaskHandler(prompt_version)
tokenizer = build_tokenizer(model_name, model_size, padding_side="right")
model = build_model(model_name, model_size, False)
torch.autograd.set_grad_enabled(False)
processed_data = task_agent.dataset_preprocess(raw_data)
dataset = TokenizedForMCRightPad(processed_data, tokenizer, task_agent.multiple_choice_promptify)
exemplar_input_ids, exemplar_attn_mask = dataset.tokenize_demonstration(exemplar_str)
loader = DataLoader(dataset, shuffle=False, drop_last=False, batch_size=1)
meta_optim = AttnOptimWrapper(model, model_name, step_size=step_size, momentum=momentum)
meta_optim.init()
for _ in range(forward_steps):
exemplar_kv = meta_optim.step(exemplar_input_ids)
generated_info = [] # question * [choice0_prob, choice1_prob]
for batch_input in loader:
batch_output = do_infer_probs(model, exemplar_kv, exemplar_attn_mask.unsqueeze(0), batch_input) # [batch_of_choice0, batch_of_choice1, ...]
zipped_logprobs = list(zip(*batch_output)) # batch * (choice0, choice1, ...)
generated_info.extend(zipped_logprobs)
all_predicted = []
for idx, (data, choice_info) in enumerate(zip(processed_data, generated_info)):
merged_choice_info = task_agent.merge_choice_info(choice_info)
merged_predictions_idx = task_agent.choice_info_to_predictions(merged_choice_info)["lm_log_p"]
predicted = task_agent.CHOICES[merged_predictions_idx]
ground_truth = task_agent.CHOICES[data["answer_idx"]]
res = f"{DISPLAY_MAPPING[dataset_name][predicted]}{'✅' if predicted == ground_truth else '❌'}"
all_predicted.append(res)
return all_predicted
def transpose(l):
return list(map(list, zip(*l)))
def button_pressed(prev_state):
dataset_name = prev_state["dataset_name"]
exemplar_str = prev_state["exemplar_str"]
forward_steps = prev_state["step"] + 2
raw_data = prev_state["raw_data"]
prev_table_data = prev_state["table_data"]
current_output = process_once(dataset_name, exemplar_str, forward_steps, raw_data)
t_prev = transpose(prev_table_data)
t_prev.append([f"T={forward_steps}"] + current_output)
updated_table_data = transpose(t_prev)
ret = [
{
"dataset_name": dataset_name,
"exemplar_str": exemplar_str,
"raw_data": raw_data,
"step": forward_steps,
"table_data": updated_table_data,
},
f"Step + 2, Now: {forward_steps}",
updated_table_data,
]
return ret
if __name__ == "__main__":
dataset_name = "sst2"
seed = 0
prompt_version = "default"
kv_iter = 10
print(f"Dataset: {dataset_name}")
task_root = Path("example_sets").joinpath(dataset_name)
with task_root.joinpath("demos.txt").open("r") as f:
demos = f.read()
with task_root.joinpath("sample.pkl").open("r") as f:
data = json.load(f)
raw_data = [data[str(i)] for i in range(len(data))]
css = """ #the-table > div > div > div > table > thead {display: none}"""
title = "🤔 Iterative Forward Tuning Boosts In-context Learning in Language Models"
demo = gr.Blocks(css=css, title="🤔Deep-Thinking")
with demo:
gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>")
with gr.Tab("SST-2"):
mapping = ["negative", "positive"]
init_columns = [[e["sentence"], f"*{DISPLAY_MAPPING['sst2'][mapping[e['label']]]}*"] for e in raw_data]
state = gr.State(
{
"dataset_name": "sst2",
"exemplar_str": demos,
"raw_data": raw_data,
"step": 0,
"table_data": [["**Test Input**", "**Golden**"], *init_columns],
}
)
prompt = gr.Textbox(label="Demonstrations (Prompt template formatted)", value=demos)
big_table = gr.DataFrame(
value=[["**Test Input**", "**Golden**"], *init_columns],
elem_id="the-table",
datatype=["markdown"] * 50,
headers=None,
)
step_button = gr.Button("Step + 2, Now: 0")
step_button.click(button_pressed, inputs=[state], outputs=[state, step_button, big_table])
demo.launch(server_name="0.0.0.0")
|