jx-yang commited on
Commit
46dec79
β€’
1 Parent(s): d4a8940

<ADD> optimize code

Browse files
Files changed (1) hide show
  1. app.py +8 -3
app.py CHANGED
@@ -22,7 +22,12 @@ DISPLAY_MAPPING = {
22
  def do_infer_probs(model, exemplar_attn_kv, exemplar_attn_mask, batched_choices_input):
23
  batched_choices_logprobs = []
24
  for batched_one_choice_input in batched_choices_input:
25
- batch_input_ids, batch_attention_mask, batch_choice_start, batch_choice_end = batched_one_choice_input
 
 
 
 
 
26
  bs = len(batch_input_ids)
27
 
28
  merged_attn_mask = torch.cat((exemplar_attn_mask.expand(bs, -1), batch_attention_mask), dim=1)
@@ -178,7 +183,7 @@ Directly employing ICL results in lower prediction accuracy. However, in our pro
178
  """
179
  <h2 style='text-align: center; margin-bottom: 1rem'>
180
  <a href='https://arxiv.org/abs/2305.13016' target="_blank" style='text-decoration: none'>[Paper]</a>
181
- <a href='https://arxiv.org/abs/2305.13016' target="_blank" style='text-decoration: none'>[Code]</a>
182
  </h2>"""
183
  )
184
 
@@ -205,7 +210,7 @@ Directly employing ICL results in lower prediction accuracy. However, in our pro
205
 
206
  prompt = gr.Textbox(label="Demonstrations (Prompt template formatted)", value=demos)
207
  gr.Markdown("<h2 style='text-align: center; margin-bottom: 1rem'>πŸ‘‡ Run forward tuning once !</h2>")
208
- step_button = gr.Button("Click here to train LLM ! Now Step: 1")
209
  big_table = gr.DataFrame(
210
  value=init_table_result,
211
  elem_id="the-table",
 
22
  def do_infer_probs(model, exemplar_attn_kv, exemplar_attn_mask, batched_choices_input):
23
  batched_choices_logprobs = []
24
  for batched_one_choice_input in batched_choices_input:
25
+ (
26
+ batch_input_ids,
27
+ batch_attention_mask,
28
+ batch_choice_start,
29
+ batch_choice_end,
30
+ ) = batched_one_choice_input
31
  bs = len(batch_input_ids)
32
 
33
  merged_attn_mask = torch.cat((exemplar_attn_mask.expand(bs, -1), batch_attention_mask), dim=1)
 
183
  """
184
  <h2 style='text-align: center; margin-bottom: 1rem'>
185
  <a href='https://arxiv.org/abs/2305.13016' target="_blank" style='text-decoration: none'>[Paper]</a>
186
+ <a href='https://arxiv.org/abs/2305.13016' target="_blank" style='text-decoration: none'>[Code]</a>
187
  </h2>"""
188
  )
189
 
 
210
 
211
  prompt = gr.Textbox(label="Demonstrations (Prompt template formatted)", value=demos)
212
  gr.Markdown("<h2 style='text-align: center; margin-bottom: 1rem'>πŸ‘‡ Run forward tuning once !</h2>")
213
+ step_button = gr.Button("Click here to train LLM ! Now Step: 1", variant="primary")
214
  big_table = gr.DataFrame(
215
  value=init_table_result,
216
  elem_id="the-table",