File size: 25,108 Bytes
d661b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
from diffusers import UnCLIPPipeline, DiffusionPipeline
import torch
import os
from lora_diffusion.cli_lora_pti import *
from lora_diffusion.lora import *
from PIL import Image
import numpy as np
import json
from lora_dataset import PivotalTuningDatasetCapation as PVD
UNET_DEFAULT_TARGET_REPLACE = {"CrossAttention", "Attention", "GEGLU"}

UNET_EXTENDED_TARGET_REPLACE = {"ResnetBlock2D", "CrossAttention", "Attention", "GEGLU"}

TEXT_ENCODER_DEFAULT_TARGET_REPLACE = {"CLIPAttention"}

TEXT_ENCODER_EXTENDED_TARGET_REPLACE = {"CLIPAttention"}

DEFAULT_TARGET_REPLACE = UNET_DEFAULT_TARGET_REPLACE

def save_all(
    unet,
    text_encoder,
    save_path,
    placeholder_token_ids=None,
    placeholder_tokens=None,
    save_lora=True,
    save_ti=True,
    target_replace_module_text=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
    target_replace_module_unet=DEFAULT_TARGET_REPLACE,
    safe_form=True,
):
    if not safe_form:
        # save ti
        if save_ti:
            ti_path = ti_lora_path(save_path)
            learned_embeds_dict = {}
            for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
                learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
                print(
                    f"Current Learned Embeddings for {tok}:, id {tok_id} ",
                    learned_embeds[:4],
                )
                learned_embeds_dict[tok] = learned_embeds.detach().cpu()

            torch.save(learned_embeds_dict, ti_path)
            print("Ti saved to ", ti_path)

        # save text encoder
        if save_lora:

            save_lora_weight(
                unet, save_path, target_replace_module=target_replace_module_unet
            )
            print("Unet saved to ", save_path)

            save_lora_weight(
                text_encoder,
                _text_lora_path(save_path),
                target_replace_module=target_replace_module_text,
            )
            print("Text Encoder saved to ", _text_lora_path(save_path))

    else:
        assert save_path.endswith(
            ".safetensors"
        ), f"Save path : {save_path} should end with .safetensors"

        loras = {}
        embeds = {}

        if save_lora:

            loras["unet"] = (unet, target_replace_module_unet)
            loras["text_encoder"] = (text_encoder, target_replace_module_text)

        if save_ti:
            for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
                learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
                print(
                    f"Current Learned Embeddings for {tok}:, id {tok_id} ",
                    learned_embeds[:4],
                )
                embeds[tok] = learned_embeds.detach().cpu()

        return save_safeloras_with_embeds(loras, embeds, save_path)

def save_safeloras_with_embeds(
    modelmap = {},
    embeds = {},
    outpath="./lora.safetensors",
):
    """
    Saves the Lora from multiple modules in a single safetensor file.

    modelmap is a dictionary of {
        "module name": (module, target_replace_module)
    }
    """
    weights = {}
    metadata = {}

    for name, (model, target_replace_module) in modelmap.items():
        metadata[name] = json.dumps(list(target_replace_module))

        for i, (_up, _down) in enumerate(
            extract_lora_as_tensor(model, target_replace_module)
        ):
            rank = _down.shape[0]

            metadata[f"{name}:{i}:rank"] = str(rank)
            weights[f"{name}:{i}:up"] = _up
            weights[f"{name}:{i}:down"] = _down

    for token, tensor in embeds.items():
        metadata[token] = EMBED_FLAG
        weights[token] = tensor
    
    sorted_dict = {key: value for key, value in sorted(weights.items())}
    state={}
    state['weights']=sorted_dict
    state['metadata'] = metadata
    # print(sorted_dict.keys())
    # # print('meta', metadata)
    # print(f"Saving weights to {outpath}")
    # safe_save(weights, outpath, metadata)
    return state
def perform_tuning(
    unet,
    vae,
    text_encoder,
    dataloader,
    num_steps,
    scheduler,
    optimizer,
    save_steps: int,
    placeholder_token_ids,
    placeholder_tokens,
    save_path,
    lr_scheduler_lora,
    lora_unet_target_modules,
    lora_clip_target_modules,
    mask_temperature,
    out_name: str,
    tokenizer,
    test_image_path: str,
    cached_latents: bool,
    log_wandb: bool = False,
    wandb_log_prompt_cnt: int = 10,
    class_token: str = "person",
    train_inpainting: bool = False,
):

    progress_bar = tqdm(range(num_steps))
    progress_bar.set_description("Steps")
    global_step = 0

    weight_dtype = torch.float16

    unet.train()
    text_encoder.train()

    if log_wandb:
        preped_clip = prepare_clip_model_sets()

    loss_sum = 0.0

    for epoch in range(math.ceil(num_steps / len(dataloader))):
        for batch in dataloader:
            lr_scheduler_lora.step()

            optimizer.zero_grad()

            loss = loss_step(
                batch,
                unet,
                vae,
                text_encoder,
                scheduler,
                train_inpainting=train_inpainting,
                t_mutliplier=0.8,
                mixed_precision=True,
                mask_temperature=mask_temperature,
                cached_latents=cached_latents,
            )
            loss_sum += loss.detach().item()

            loss.backward()
            torch.nn.utils.clip_grad_norm_(
                itertools.chain(unet.parameters(), text_encoder.parameters()), 1.0
            )
            optimizer.step()
            progress_bar.update(1)
            logs = {
                "loss": loss.detach().item(),
                "lr": lr_scheduler_lora.get_last_lr()[0],
            }
            progress_bar.set_postfix(**logs)

            global_step += 1

            if global_step % save_steps == 0:
                save_all(
                    unet,
                    text_encoder,
                    placeholder_token_ids=placeholder_token_ids,
                    placeholder_tokens=placeholder_tokens,
                    save_path=os.path.join(
                        save_path, f"step_{global_step}.safetensors"
                    ),
                    target_replace_module_text=lora_clip_target_modules,
                    target_replace_module_unet=lora_unet_target_modules,
                )
                moved = (
                    torch.tensor(list(itertools.chain(*inspect_lora(unet).values())))
                    .mean()
                    .item()
                )

                print("LORA Unet Moved", moved)
                moved = (
                    torch.tensor(
                        list(itertools.chain(*inspect_lora(text_encoder).values()))
                    )
                    .mean()
                    .item()
                )

                print("LORA CLIP Moved", moved)

                if log_wandb:
                    with torch.no_grad():
                        pipe = StableDiffusionPipeline(
                            vae=vae,
                            text_encoder=text_encoder,
                            tokenizer=tokenizer,
                            unet=unet,
                            scheduler=scheduler,
                            safety_checker=None,
                            feature_extractor=None,
                        )

                        # open all images in test_image_path
                        images = []
                        for file in os.listdir(test_image_path):
                            if file.endswith(".png") or file.endswith(".jpg"):
                                images.append(
                                    Image.open(os.path.join(test_image_path, file))
                                )

                        wandb.log({"loss": loss_sum / save_steps})
                        loss_sum = 0.0
                        wandb.log(
                            evaluate_pipe(
                                pipe,
                                target_images=images,
                                class_token=class_token,
                                learnt_token="".join(placeholder_tokens),
                                n_test=wandb_log_prompt_cnt,
                                n_step=50,
                                clip_model_sets=preped_clip,
                            )
                        )

            if global_step >= num_steps:
                break

    return save_all(
        unet,
        text_encoder,
        placeholder_token_ids=placeholder_token_ids,
        placeholder_tokens=placeholder_tokens,
        save_path=os.path.join(save_path, f"{out_name}.safetensors"),
        target_replace_module_text=lora_clip_target_modules,
        target_replace_module_unet=lora_unet_target_modules,
    )


def train(
    images,
    caption,
    pretrained_model_name_or_path: str,
    train_text_encoder: bool = True,
    pretrained_vae_name_or_path: str = None,
    revision: Optional[str] = None,
    perform_inversion: bool = True,
    use_template: Literal[None, "object", "style"] = None,
    train_inpainting: bool = False,
    placeholder_tokens: str = "",
    placeholder_token_at_data: Optional[str] = None,
    initializer_tokens: Optional[str] = None,
    seed: int = 42,
    resolution: int = 512,
    color_jitter: bool = True,
    train_batch_size: int = 1,
    sample_batch_size: int = 1,
    max_train_steps_tuning: int = 1000,
    max_train_steps_ti: int = 1000,
    save_steps: int = 100,
    gradient_accumulation_steps: int = 4,
    gradient_checkpointing: bool = False,
    lora_rank: int = 4,
    lora_unet_target_modules={"CrossAttention", "Attention", "GEGLU"},
    lora_clip_target_modules={"CLIPAttention"},
    lora_dropout_p: float = 0.0,
    lora_scale: float = 1.0,
    use_extended_lora: bool = False,
    clip_ti_decay: bool = True,
    learning_rate_unet: float = 1e-4,
    learning_rate_text: float = 1e-5,
    learning_rate_ti: float = 5e-4,
    continue_inversion: bool = False,
    continue_inversion_lr: Optional[float] = None,
    use_face_segmentation_condition: bool = False,
    cached_latents: bool = True,
    use_mask_captioned_data: bool = False,
    mask_temperature: float = 1.0,
    scale_lr: bool = False,
    lr_scheduler: str = "linear",
    lr_warmup_steps: int = 0,
    lr_scheduler_lora: str = "linear",
    lr_warmup_steps_lora: int = 0,
    weight_decay_ti: float = 0.00,
    weight_decay_lora: float = 0.001,
    use_8bit_adam: bool = False,
    device="cuda:0",
    extra_args: Optional[dict] = None,
    log_wandb: bool = False,
    wandb_log_prompt_cnt: int = 10,
    wandb_project_name: str = "new_pti_project",
    wandb_entity: str = "new_pti_entity",
    proxy_token: str = "person",
    enable_xformers_memory_efficient_attention: bool = False,
    out_name: str = "final_lora",
):


    torch.manual_seed(seed)

    # print(placeholder_tokens, initializer_tokens)
    if len(placeholder_tokens) == 0:
        placeholder_tokens = []
        print("PTI : Placeholder Tokens not given, using null token")
    else:
        placeholder_tokens = placeholder_tokens.split("|")

        assert (
            sorted(placeholder_tokens) == placeholder_tokens
        ), f"Placeholder tokens should be sorted. Use something like {'|'.join(sorted(placeholder_tokens))}'"

    if initializer_tokens is None:
        print("PTI : Initializer Tokens not given, doing random inits")
        initializer_tokens = ["<rand-0.017>"] * len(placeholder_tokens)
    else:
        initializer_tokens = initializer_tokens.split("|")

    assert len(initializer_tokens) == len(
        placeholder_tokens
    ), "Unequal Initializer token for Placeholder tokens."

    if proxy_token is not None:
        class_token = proxy_token
    class_token = "".join(initializer_tokens)

    if placeholder_token_at_data is not None:
        tok, pat = placeholder_token_at_data.split("|")
        token_map = {tok: pat}

    else:
        token_map = {"DUMMY": "".join(placeholder_tokens)}

    print("PTI : Placeholder Tokens", placeholder_tokens)
    print("PTI : Initializer Tokens", initializer_tokens)

    # get the models
    text_encoder, vae, unet, tokenizer, placeholder_token_ids = get_models(
        pretrained_model_name_or_path,
        pretrained_vae_name_or_path,
        revision,
        placeholder_tokens,
        initializer_tokens,
        device=device,
    )

    noise_scheduler = DDPMScheduler.from_config(
        pretrained_model_name_or_path, subfolder="scheduler"
    )

    if gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    if enable_xformers_memory_efficient_attention:
        from diffusers.utils.import_utils import is_xformers_available

        if is_xformers_available():
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError(
                "xformers is not available. Make sure it is installed correctly"
            )

    if scale_lr:
        unet_lr = learning_rate_unet * gradient_accumulation_steps * train_batch_size
        text_encoder_lr = (
            learning_rate_text * gradient_accumulation_steps * train_batch_size
        )
        ti_lr = learning_rate_ti * gradient_accumulation_steps * train_batch_size
    else:
        unet_lr = learning_rate_unet
        text_encoder_lr = learning_rate_text
        ti_lr = learning_rate_ti

    train_dataset = PVD(
        images=images,
        caption=caption,
        token_map=token_map,
        use_template=use_template,
        tokenizer=tokenizer,
        size=resolution,
        color_jitter=color_jitter,
        use_face_segmentation_condition=use_face_segmentation_condition,
        use_mask_captioned_data=use_mask_captioned_data,
        train_inpainting=train_inpainting,
    )

    train_dataset.blur_amount = 200

    if train_inpainting:
        assert not cached_latents, "Cached latents not supported for inpainting"

        train_dataloader = inpainting_dataloader(
            train_dataset, train_batch_size, tokenizer, vae, text_encoder
        )
    else:
        print(cached_latents)
        train_dataloader = text2img_dataloader(
            train_dataset,
            train_batch_size,
            tokenizer,
            vae,
            text_encoder,
            cached_latents=cached_latents,
        )

    index_no_updates = torch.arange(len(tokenizer)) != -1

    for tok_id in placeholder_token_ids:
        index_no_updates[tok_id] = False

    unet.requires_grad_(False)
    vae.requires_grad_(False)

    params_to_freeze = itertools.chain(
        text_encoder.text_model.encoder.parameters(),
        text_encoder.text_model.final_layer_norm.parameters(),
        text_encoder.text_model.embeddings.position_embedding.parameters(),
    )
    for param in params_to_freeze:
        param.requires_grad = False

    if cached_latents:
        vae = None
    # STEP 1 : Perform Inversion
    if perform_inversion:
        ti_optimizer = optim.AdamW(
            text_encoder.get_input_embeddings().parameters(),
            lr=ti_lr,
            betas=(0.9, 0.999),
            eps=1e-08,
            weight_decay=weight_decay_ti,
        )

        lr_scheduler = get_scheduler(
            lr_scheduler,
            optimizer=ti_optimizer,
            num_warmup_steps=lr_warmup_steps,
            num_training_steps=max_train_steps_ti,
        )

        train_inversion(
            unet,
            vae,
            text_encoder,
            train_dataloader,
            max_train_steps_ti,
            cached_latents=cached_latents,
            accum_iter=gradient_accumulation_steps,
            scheduler=noise_scheduler,
            index_no_updates=index_no_updates,
            optimizer=ti_optimizer,
            lr_scheduler=lr_scheduler,
            save_steps=save_steps,
            placeholder_tokens=placeholder_tokens,
            placeholder_token_ids=placeholder_token_ids,
            save_path="./tmps",
            test_image_path="./tmps",
            log_wandb=log_wandb,
            wandb_log_prompt_cnt=wandb_log_prompt_cnt,
            class_token=class_token,
            train_inpainting=train_inpainting,
            mixed_precision=False,
            tokenizer=tokenizer,
            clip_ti_decay=clip_ti_decay,
        )

        del ti_optimizer

    # Next perform Tuning with LoRA:
    if not use_extended_lora:
        unet_lora_params, _ = inject_trainable_lora(
            unet,
            r=lora_rank,
            target_replace_module=lora_unet_target_modules,
            dropout_p=lora_dropout_p,
            scale=lora_scale,
        )
    else:
        print("PTI : USING EXTENDED UNET!!!")
        lora_unet_target_modules = (
            lora_unet_target_modules | UNET_EXTENDED_TARGET_REPLACE
        )
        print("PTI : Will replace modules: ", lora_unet_target_modules)

        unet_lora_params, _ = inject_trainable_lora_extended(
            unet, r=lora_rank, target_replace_module=lora_unet_target_modules
        )
    print(f"PTI : has {len(unet_lora_params)} lora")

    print("PTI : Before training:")
    inspect_lora(unet)

    params_to_optimize = [
        {"params": itertools.chain(*unet_lora_params), "lr": unet_lr},
    ]

    text_encoder.requires_grad_(False)

    if continue_inversion:
        params_to_optimize += [
            {
                "params": text_encoder.get_input_embeddings().parameters(),
                "lr": continue_inversion_lr
                if continue_inversion_lr is not None
                else ti_lr,
            }
        ]
        text_encoder.requires_grad_(True)
        params_to_freeze = itertools.chain(
            text_encoder.text_model.encoder.parameters(),
            text_encoder.text_model.final_layer_norm.parameters(),
            text_encoder.text_model.embeddings.position_embedding.parameters(),
        )
        for param in params_to_freeze:
            param.requires_grad = False
    else:
        text_encoder.requires_grad_(False)
    if train_text_encoder:
        text_encoder_lora_params, _ = inject_trainable_lora(
            text_encoder,
            target_replace_module=lora_clip_target_modules,
            r=lora_rank,
        )
        params_to_optimize += [
            {
                "params": itertools.chain(*text_encoder_lora_params),
                "lr": text_encoder_lr,
            }
        ]
        inspect_lora(text_encoder)

    lora_optimizers = optim.AdamW(params_to_optimize, weight_decay=weight_decay_lora)

    unet.train()
    if train_text_encoder:
        text_encoder.train()

    train_dataset.blur_amount = 70

    lr_scheduler_lora = get_scheduler(
        lr_scheduler_lora,
        optimizer=lora_optimizers,
        num_warmup_steps=lr_warmup_steps_lora,
        num_training_steps=max_train_steps_tuning,
    )

    return perform_tuning(
        unet,
        vae,
        text_encoder,
        train_dataloader,
        max_train_steps_tuning,
        cached_latents=cached_latents,
        scheduler=noise_scheduler,
        optimizer=lora_optimizers,
        save_steps=save_steps,
        placeholder_tokens=placeholder_tokens,
        placeholder_token_ids=placeholder_token_ids,
        save_path="./tmps",
        lr_scheduler_lora=lr_scheduler_lora,
        lora_unet_target_modules=lora_unet_target_modules,
        lora_clip_target_modules=lora_clip_target_modules,
        mask_temperature=mask_temperature,
        tokenizer=tokenizer,
        out_name=out_name,
        test_image_path="./tmps",
        log_wandb=log_wandb,
        wandb_log_prompt_cnt=wandb_log_prompt_cnt,
        class_token=class_token,
        train_inpainting=train_inpainting,
    )
    
def semantic_karlo(prompt, output_dir, num_initial_image, bg_preprocess=False):
    pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
    pipe = pipe.to('cuda')
    view_prompt=["front view of ","overhead view of ","side view of ", "back view of "]
    
    if bg_preprocess:
        # Please refer to the code at https://github.com/Ir1d/image-background-remove-tool.
        import cv2
        from carvekit.api.high import HiInterface
        interface = HiInterface(object_type="object",
                        batch_size_seg=5,
                        batch_size_matting=1,
                        device='cuda' if torch.cuda.is_available() else 'cpu',
                        seg_mask_size=640,  # Use 640 for Tracer B7 and 320 for U2Net
                        matting_mask_size=2048,
                        trimap_prob_threshold=231,
                        trimap_dilation=30,
                        trimap_erosion_iters=5,
                        fp16=False)

    
    for i in range(num_initial_image):
        t=", white background" if bg_preprocess else ", white background"
        if i==0:
            prompt_ = f"{view_prompt[i%4]}{prompt}{t}"
        else:
            prompt_ = f"{view_prompt[i%4]}{prompt}"

        image = pipe(prompt_).images[0]
        fn=f"instance{i}.png"
        os.makedirs(output_dir,exist_ok=True)
        
        if bg_preprocess:
            # motivated by NeuralLift-360 (removing bg), and Zero-1-to-3 (removing bg and object-centering)
            # NOTE: This option was added during the code orgranization process.
            # The results reported in the paper were obtained with [bg_preprocess: False] setting.
            img_without_background = interface([image])
            mask = np.array(img_without_background[0]) > 127
            image = np.array(image)
            image[~mask] = [255., 255., 255.]
            # x, y, w, h = cv2.boundingRect(mask.astype(np.uint8))
            # image = image[y:y+h, x:x+w, :]
            image = Image.fromarray(np.array(image))
            
        image.save(os.path.join(output_dir,fn))
        
        
def semantic_sd(prompt, output_dir, num_initial_image, bg_preprocess=False):
    pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
    pipe = pipe.to('cuda')
    view_prompt=["front view of ","overhead view of ","side view of ", "back view of "]
    
    if bg_preprocess:
        # Please refer to the code at https://github.com/Ir1d/image-background-remove-tool.
        import cv2
        from carvekit.api.high import HiInterface
        interface = HiInterface(object_type="object",
                        batch_size_seg=5,
                        batch_size_matting=1,
                        device='cuda' if torch.cuda.is_available() else 'cpu',
                        seg_mask_size=640,  # Use 640 for Tracer B7 and 320 for U2Net
                        matting_mask_size=2048,
                        trimap_prob_threshold=231,
                        trimap_dilation=30,
                        trimap_erosion_iters=5,
                        fp16=False)

    
    for i in range(num_initial_image):
        t=", white background" if bg_preprocess else ", white background"
        if i==0:
            prompt_ = f"{view_prompt[i%4]}{prompt}{t}"
        else:
            prompt_ = f"{view_prompt[i%4]}{prompt}"

        image = pipe(prompt_).images[0]
        fn=f"instance{i}.png"
        os.makedirs(output_dir,exist_ok=True)
        
        if bg_preprocess:
            # motivated by NeuralLift-360 (removing bg), and Zero-1-to-3 (removing bg and object-centering)
            # NOTE: This option was added during the code orgranization process.
            # The results reported in the paper were obtained with [bg_preprocess: False] setting.
            img_without_background = interface([image])
            mask = np.array(img_without_background[0]) > 127
            image = np.array(image)
            image[~mask] = [255., 255., 255.]
            # x, y, w, h = cv2.boundingRect(mask.astype(np.uint8))
            # image = image[y:y+h, x:x+w, :]
            image = Image.fromarray(np.array(image))
            
        image.save(os.path.join(output_dir,fn))

def semantic_coding(images, cfgs,sd,initial):
    ti_step=cfgs.pop('ti_step')
    pt_step=cfgs.pop('pt_step')
    # semantic_model=cfgs.pop('semantic_model')
    prompt=cfgs['sd']['prompt']
    
    # instance_dir=os.path.join(exp_dir,'initial_image')
    # weight_dir=os.path.join(exp_dir,'lora')
    if initial=="":
        initial=None
    
    state=train(images=images, caption=initial, pretrained_model_name_or_path='runwayml/stable-diffusion-v1-5',\
          gradient_checkpointing=True,\
          scale_lr=True,lora_rank=1,cached_latents=False,save_steps=max(ti_step,pt_step)+1,\
          max_train_steps_ti=ti_step,max_train_steps_tuning=pt_step, use_template="object",\
          lr_warmup_steps=0, lr_warmup_steps_lora=100, placeholder_tokens="<0>", initializer_tokens=initial,\
          continue_inversion=True, continue_inversion_lr=1e-4,device="cuda:0",            
          )
    if initial is not None:
        sd.prompt=prompt.replace(initial,'<0>')
    else:
        sd.prompt="a <0>"
    return state