3DFuse / lora_dataset.py
jyseo's picture
first commit
d661b19
raw
history blame
7.11 kB
import random
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
from PIL import Image
from torch import zeros_like
from torch.utils.data import Dataset
from torchvision import transforms
import glob
from lora_diffusion.preprocess_files import face_mask_google_mediapipe
OBJECT_TEMPLATE = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
STYLE_TEMPLATE = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
NULL_TEMPLATE = ["{}"]
TEMPLATE_MAP = {
"object": OBJECT_TEMPLATE,
"style": STYLE_TEMPLATE,
"null": NULL_TEMPLATE,
}
def _randomset(lis):
ret = []
for i in range(len(lis)):
if random.random() < 0.5:
ret.append(lis[i])
return ret
def _shuffle(lis):
return random.sample(lis, len(lis))
def _get_cutout_holes(
height,
width,
min_holes=8,
max_holes=32,
min_height=16,
max_height=128,
min_width=16,
max_width=128,
):
holes = []
for _n in range(random.randint(min_holes, max_holes)):
hole_height = random.randint(min_height, max_height)
hole_width = random.randint(min_width, max_width)
y1 = random.randint(0, height - hole_height)
x1 = random.randint(0, width - hole_width)
y2 = y1 + hole_height
x2 = x1 + hole_width
holes.append((x1, y1, x2, y2))
return holes
def _generate_random_mask(image):
mask = zeros_like(image[:1])
holes = _get_cutout_holes(mask.shape[1], mask.shape[2])
for (x1, y1, x2, y2) in holes:
mask[:, y1:y2, x1:x2] = 1.0
if random.uniform(0, 1) < 0.25:
mask.fill_(1.0)
masked_image = image * (mask < 0.5)
return mask, masked_image
class PivotalTuningDatasetCapation(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
images,
caption,
tokenizer,
token_map: Optional[dict] = None,
use_template: Optional[str] = None,
size=512,
h_flip=True,
color_jitter=False,
resize=True,
use_mask_captioned_data=False,
use_face_segmentation_condition=False,
train_inpainting=False,
blur_amount: int = 70,
):
self.size = size
self.tokenizer = tokenizer
self.resize = resize
self.train_inpainting = train_inpainting
assert not (
use_mask_captioned_data and use_template
), "Can't use both mask caption data and template."
# Prepare the instance images
# self.instance_images_path = None
self.images = images
self.captions = [caption] * len(images)
self.use_mask = use_face_segmentation_condition or use_mask_captioned_data
self.use_mask_captioned_data = use_mask_captioned_data
self.num_instance_images = len(self.images)
self.token_map = token_map
self.use_template = use_template
if use_template is not None:
self.templates = TEMPLATE_MAP[use_template]
self._length = self.num_instance_images
self.h_flip = h_flip
self.image_transforms = transforms.Compose(
[
transforms.Resize(
size, interpolation=transforms.InterpolationMode.BILINEAR
)
if resize
else transforms.Lambda(lambda x: x),
transforms.ColorJitter(0.1, 0.1)
if color_jitter
else transforms.Lambda(lambda x: x),
transforms.CenterCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
self.blur_amount = blur_amount
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = self.images[index % self.num_instance_images]
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
if self.train_inpainting:
(
example["instance_masks"],
example["instance_masked_images"],
) = _generate_random_mask(example["instance_images"])
if self.use_template:
assert self.token_map is not None
input_tok = list(self.token_map.values())[0]
text = random.choice(self.templates).format(input_tok)
else:
text = self.captions[index % self.num_instance_images].strip()
if self.token_map is not None:
for token, value in self.token_map.items():
text = text.replace(token, value)
print(text)
if self.use_mask:
example["mask"] = (
self.image_transforms(
Image.open(self.mask_path[index % self.num_instance_images])
)
* 0.5
+ 1.0
)
if self.h_flip and random.random() > 0.5:
hflip = transforms.RandomHorizontalFlip(p=1)
example["instance_images"] = hflip(example["instance_images"])
if self.use_mask:
example["mask"] = hflip(example["mask"])
example["instance_prompt_ids"] = self.tokenizer(
text,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example