Spaces:
Runtime error
Runtime error
from openai import OpenAI | |
import gradio as gr | |
import os | |
import json | |
import functools | |
import random | |
import datetime | |
from transformers import AutoTokenizer | |
reflection_tokenizer = AutoTokenizer.from_pretrained("mattshumer/Reflection-Llama-3.1-70B") | |
api_key = os.environ.get('FEATHERLESS_API_KEY') | |
client = OpenAI( | |
base_url="https://api.featherless.ai/v1", | |
api_key=api_key | |
) | |
SYSTEM_PROMPT = """You are a world-class AI system, capable of complex reasoning and reflection. Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags.""" | |
def respond(message, history, model): | |
history_openai_format = [{"role": "system", "content": SYSTEM_PROMPT}] | |
for human, assistant in history: | |
history_openai_format.append({"role": "user", "content": human }) | |
history_openai_format.append({"role": "assistant", "content":assistant}) | |
history_openai_format.append({"role": "user", "content": message}) | |
if model == "mattshumer/Reflection-Llama-3.1-70B": | |
# chat/completions not working for this model; | |
# apply chat template locally | |
response = client.completions.create( | |
model=model, | |
prompt=reflection_tokenizer.apply_chat_template(history_openai_format, tokenize=False), | |
temperature=1.0, | |
stream=True, | |
max_tokens=2000, | |
extra_headers={ | |
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model', | |
'X-Title': "HF's missing inference widget" | |
} | |
) | |
# debugger_ran = False | |
partial_message = "" | |
for chunk in response: | |
# if not debugger_ran: | |
# import code | |
# code.InteractiveConsole(locals=locals()).interact() | |
# debugger_ran = True | |
if chunk.choices[0].text is not None: | |
partial_message = partial_message + chunk.choices[0].text | |
prefix_to_strip = "<|start_header_id|>assistant<|end_header_id|>\n\n" | |
yield partial_message[len(prefix_to_strip):] | |
else: | |
response = client.chat.completions.create( | |
model=model, | |
messages= history_openai_format, | |
temperature=1.0, | |
stream=True, | |
max_tokens=2000, | |
extra_headers={ | |
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model', | |
'X-Title': "HF's missing inference widget" | |
} | |
) | |
partial_message = "" | |
for chunk in response: | |
if chunk.choices[0].delta.content is not None: | |
partial_message = partial_message + chunk.choices[0].delta.content | |
yield partial_message | |
logo = open('./logo.svg').read() | |
with open('./model-cache.json', 'r') as f_model_cache: | |
model_cache = json.load(f_model_cache) | |
model_class_filter = { | |
"mistral-v02-7b-std-lc": True, | |
"llama3-8b-8k": True, | |
"llama2-solar-10b7-4k": True, | |
"mistral-nemo-12b-lc": True, | |
"llama2-13b-4k": True, | |
"llama3-15b-8k": True, | |
"qwen2-32b-lc":False, | |
"llama3-70b-8k":False, | |
"qwen2-72b-lc":False, | |
"mixtral-8x22b-lc":False, | |
"llama3-405b-lc":False, | |
} | |
def build_model_choices(): | |
all_choices = [] | |
for model_class in model_cache: | |
if model_class not in model_class_filter: | |
print(f"Warning: new model class {model_class}. Treating as blacklisted") | |
continue | |
if not model_class_filter[model_class]: | |
continue | |
all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ] | |
# and add one more ... | |
model_class = "llama3-70b-8k" | |
model_id = "mattshumer/Reflection-Llama-3.1-70B" | |
all_choices += [(f"{model_id} ({model_class})", model_id)] | |
return all_choices | |
model_choices = build_model_choices() | |
def initial_model(referer=None): | |
return "mattshumer/Reflection-Llama-3.1-70B" | |
# if referer == 'http://127.0.0.1:7860/': | |
# return 'Sao10K/Venomia-1.1-m7' | |
# if referer and referer.startswith("https://huggingface.co/"): | |
# possible_model = referer[23:] | |
# full_model_list = functools.reduce(lambda x,y: x+y, model_cache.values(), []) | |
# model_is_supported = possible_model in full_model_list | |
# if model_is_supported: | |
# return possible_model | |
# # let's use a random but different model each day. | |
# key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e') | |
# o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}") | |
# return o.choice(model_choices)[1] | |
title_text="HuggingFace's missing inference widget" | |
css = """ | |
.logo-mark { fill: #ffe184; } | |
/* from https://github.com/gradio-app/gradio/issues/4001 | |
* necessary as putting ChatInterface in gr.Blocks changes behaviour | |
*/ | |
.contain { display: flex; flex-direction: column; } | |
.gradio-container { height: 100vh !important; } | |
#component-0 { height: 100%; } | |
#chatbot { flex-grow: 1; overflow: auto;} | |
""" | |
with gr.Blocks(title_text, css=css) as demo: | |
gr.HTML(""" | |
<h1 align="center">HuggingFace's missing inference widget</h1> | |
<h2 align="center"> | |
Please select your model from the list 👇 | |
</h2> | |
""") | |
# hidden_state = gr.State(value=initial_model) | |
with gr.Row(): | |
model_selector = gr.Dropdown( | |
label="Select your Model", | |
choices=build_model_choices(), | |
value=initial_model, | |
# value=hidden_state, | |
scale=4 | |
) | |
gr.Button( | |
value="Visit Model Card ↗️", | |
scale=1 | |
).click( | |
inputs=[model_selector], | |
js="(model_selection) => { window.open(`https://huggingface.co/${model_selection}`, '_blank') }", | |
fn=None, | |
) | |
gr.ChatInterface( | |
respond, | |
additional_inputs=[model_selector], | |
head=""", | |
<script>console.log("Hello from gradio!")</script> | |
""", | |
concurrency_limit=5 | |
) | |
gr.HTML(f""" | |
<p align="center"> | |
Inference by <a href="https://featherless.ai">{logo}</a> | |
</p> | |
""") | |
def update_initial_model_choice(request: gr.Request): | |
return initial_model(request.headers.get('referer')) | |
demo.load(update_initial_model_choice, outputs=model_selector) | |
demo.launch() | |