|
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor |
|
import torch |
|
import librosa |
|
|
|
model_id = "facebook/mms-lid-1024" |
|
|
|
processor = AutoFeatureExtractor.from_pretrained(model_id) |
|
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id) |
|
|
|
|
|
LID_SAMPLING_RATE = 16_000 |
|
LID_TOPK = 10 |
|
LID_THRESHOLD = 0.33 |
|
|
|
LID_LANGUAGES = {} |
|
with open(f"data/lid/all_langs.tsv") as f: |
|
for line in f: |
|
iso, name = line.split(" ", 1) |
|
LID_LANGUAGES[iso] = name |
|
|
|
|
|
def identify(audio_source=None, microphone=None, file_upload=None): |
|
if audio_source is None and microphone is None and file_upload is None: |
|
|
|
return {} |
|
|
|
if type(microphone) is dict: |
|
|
|
microphone = microphone["name"] |
|
audio_fp = ( |
|
file_upload if "upload" in str(audio_source or "").lower() else microphone |
|
) |
|
if audio_fp is None: |
|
return "ERROR: You have to either use the microphone or upload an audio file" |
|
|
|
audio_samples = librosa.load(audio_fp, sr=LID_SAMPLING_RATE, mono=True)[0] |
|
|
|
inputs = processor( |
|
audio_samples, sampling_rate=LID_SAMPLING_RATE, return_tensors="pt" |
|
) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
elif ( |
|
hasattr(torch.backends, "mps") |
|
and torch.backends.mps.is_available() |
|
and torch.backends.mps.is_built() |
|
): |
|
device = torch.device("mps") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
model.to(device) |
|
inputs = inputs.to(device) |
|
|
|
with torch.no_grad(): |
|
logit = model(**inputs).logits |
|
|
|
logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1) |
|
scores, indices = torch.topk(logit_lsm, 5, dim=-1) |
|
scores, indices = torch.exp(scores).to("cpu").tolist(), indices.to("cpu").tolist() |
|
iso2score = {model.config.id2label[int(i)]: s for s, i in zip(scores, indices)} |
|
if max(iso2score.values()) < LID_THRESHOLD: |
|
return "Low confidence in the language identification predictions. Output is not shown!" |
|
return {LID_LANGUAGES[iso]: score for iso, score in iso2score.items()} |
|
|
|
|
|
LID_EXAMPLES = [ |
|
[None, "./assets/english.mp3", None], |
|
[None, "./assets/tamil.mp3", None], |
|
[None, "./assets/burmese.mp3", None], |
|
] |